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Abstract

These are my notes for an eCHT minicourse given by Nat Stapleton in May 2025. The
content is is about global power functor structures on the complex representation ring,
Burnside rings and Morava E-theory as well as a talk on partition functors yielding a sort of
universal exponential relation.

Contents

1 Motivation 1

2 The Complex Representation Ring 1
2.1 Representations, Restrictions, Transfers . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Character Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Relation to Restriction and Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Power Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 Interaction with the Character Map . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.6 Symmetric Powers and Adams Operations from Power Operations . . . . . . . . 7

3 Burnside Rings 7
3.1 Definition and First Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Restrictions & Transfers & External Multiplication . . . . . . . . . . . . . . . . . . 8
3.4 Character Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 Power Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Morava E-Theory 11
4.1 Prelude: p-adic K-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 What is Morava E-Theory? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 HKR Character Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Partition Functors & Universal Exponential Relations 16
5.1 Motivation and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Partition Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 The monad Div . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4 Symmetric Functions in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

0



Qi Zhu Power Operations and Global Algebra

1 Motivation

The chromatic story gives rise to LECTURE 1

S HFp

...

E3

E2

KU KU∧
p = E1

each of which has a global equivariant refinement where the left objects are the usual global
versions and the right side objects are given a Borel global equivariant structure. Thus, one can
evaluate them on finite groups and this gives rise to objects in global algebra.

2 The Complex Representation Ring

2.1 Representations, Restrictions, Transfers

Starting in the height 1 story leads us into the theory of RU(G). Recall that this is the Grothendieck
ring of the monoidal category of complex G-representations RepC(G) with tensor product is
given by V ⊗C W endowed with the diagonal G-action.

Proposition 2.1. Every G-representation is a sum of irreducibles in a unique way.

Proof. This is a consequence of Schur’s Lemma.

So RU(G) is additively a free Z-module with canonical basis given by the set of isomorphism
classes of irreducible G-representations. In particular, the additive structure is not the most
exciting thing to study on RU(G) and the story would end there without the multiplicative
structure.

Example 2.2.

(i) The dimension function gives RU(e) ∼= Z.

(ii) Consider RU(Cn) and let ρ : Cn

⟳

C via rotation by 2πi
n . Thus, ρ ⊗ ρ : Cn

⟳

C ⊗C C ∼= C

is given by rotation by 4πi
n , and so on. In particular, ρ⊗n is the trivial representation and

all the powers 1, ρ⊗1, · · · , ρ⊗n−1 are non-isomorphic, meaning that they form an additive
basis whose multiplication we’ve just understood.

This implies RU(Cn) ∼= Z[x]/(xn − 1) for x = [ρ].

Moreover, since all irreducibles show up in the regular representation, it follows immedi-
ately by a dimension argument that

[C[Cn]] = 1 + x + x2 + · · ·+ xn−1.
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For example, C[C2] = C(1 + τ) ⊕ C(1 − τ). More generally, let ζ be a primitive n-th root
of unity, then C[Cn] decomposes into the subrepresentations spanned by

vi = 1 + ζ iρ + ζ2iρ2 + · · ·+ ζ(n−1)iρn−1.

One way to see this is to explicitly write out the matrix for ρ and computing its eigenvec-
tors.

Construction 2.3. Let f : H → G be a group homomorphism.

(i) The map Res f : RU(G) → RU(H), [G

⟳

V] 7→ [H → G

⟳

V] is a ring map.

(ii) The map Tr f : RU(H) → RU(G), [H

⟳

V] 7→ [G

⟳

C[G] ⊗C[H] V] is an additive map.

Note that transfers exist for any group homomorphism f : H → G. This is a special feature of
RU and is not in general available in global algebra, rather only transfers along injective group
homomorphisms are accessible.

Example 2.4.

(i) Let i : e ↪→ G. Then,

Resi : RU(G) → RU(e) ∼= Z, [V] 7→ dim V
Tri : Z ∼= RU(e) → RU(G), [C] 7→ [C[G]].

(ii) For f : H ↠ G we obtain Tr f ([V]) = [V/ ker f ] using G ∼= H/ ker f .

These interact in two important ways:

Fact 2.5.

(i) Double coset formula: Given H, K ≤ G we have

ResG
K TrG

H = ∑
KsH∈K\G/H

TrK
K∩sHs−1 cs ResH

s−1Ks∩H .

(ii) Frobenius Reciprocity: Let x ∈ RU(G) and y ∈ RU(H). Then, Tr f (Res f (x)y) = xTr f (y) for
f : H → G.

Corollary 2.6. Let f : H → G. Then, im Tr f ⊆ RU(G) is an ideal.

Proof. This follows from Frobenius reciprocity.

Example 2.7. Let n = kd and consider

Ck Cn Cn/Ck
∼= Cd.

f g

Let’s compute some restrictions and transfers related to these maps.

(i) We obtain

Res f : Z[x]/(xn − 1) ∼= RU(Cn) → RU(Ck) ∼= Z[x]/(xk − 1), x 7→ x,

as the rotation by 2πi
n is restricted to rotation by 2πid

n = 2πi
k since Ck → Cn, σk 7→ σd

n if σ
denotes a generator. This map is in particular surjective.
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(ii) We can describe

Tr f : RU(Ck) → RU(Cn), [C] 7→ [C[Cn] ⊗C[Ck] C] = [C[Cn/Ck]].

It’s enough to describe this on 1 ∈ RU(Ck) since Res f is surjective by (i), so via Frobenius
reciprocity Tr f (Res f (x)y) = xTr f (y) we can reach every input in Tr f and immediately
obtain a formula for it.

(iii) Similar to (i) we obtain

Resg : RU(Cd) → RU(Cn), x 7→ xk.

In particular, [C[Cd]] 7→ [C[Cn/Ck]] which becomes

1 + x + x2 + · · ·+ xd−1 7→ 1 + xk + x2k + · · ·+ x(d−1)k.

This shows [C[Cn/Ck]] = 1 + xk + x2k + · · ·+ x(d−1)k in RU(Cn).

Example 2.8. We compute Tre
C2

: RU(C2) → Z, 1 7→ 1, x 7→ 0 using 2.4(ii).

Fact 2.9 (Künneth Isomorphism). The restriction of the projection maps induce a ring homo-
morphism ⊠ : RU(G1) ⊗ RU(G2) → RU(G1 × G2) which is an isomorphism.

Thus, we know understand RU(G) for every finite abelian group G! On the other hand, it is
hard to describe RU(G) explicitly for finite groups G. The way to go is through character theory.

2.2 Character Theory

Let Q(µ∞) denote Q with all roots of unities adjoined.

Construction 2.10. Let ρ : G → GLn(C) be a G-representation and consider tr(ρ(g)). We make
the following two observations.

(i) The eigenvalues of ρ(g) must be roots of unities since g has finite order, thus tr(ρ(g)) is a
sum of roots of unity.1

(ii) The trace tr is invariant under conjugation.

Combining these yields the character map

χ : RU(G) → HomSet(G/ conj, Q(µ∞)) = Cl(G, Q(µ∞))

into the ring of Q(µ∞)-valued class functions.

Fact 2.11. The character map is an injective ring homomorphism and induces an isomorphism

Q(µ∞) ⊗ RU(G) ∼−→ Cl(G, Q(µ∞)).

In fact, let “Z = limn Z/n ⊆ ∏n Z/n denote the ring of profinite integers which shows up as

Gal(Q(µ∞)/Q) ∼= “Z× ∼= Aut(“Z).

In turns out that G/ conj ∼= HomGrp(Top)(“Z, G)/ conj and thus “Z× ∼= Aut(“Z) acts on it by
precomposition. In particular, a conjugation action lets “Z× act on Cl(G, Q(µ∞)). It turns out that

Gal(Q(µ∞)/Q) ∼= “Z× ∼= Aut(“Z)

is a “Z×-equivariant map. Taking fixed points thus yields:
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Proposition 2.12. The character map induces an isomorphism χ : Q⊗RU(G) ∼−→ Cl(G, Q(µ∞))“Z×
.

Example 2.13. Let G = Cn. Then, LECTURE 2

χ : RU(Cn) → Cl(Cn, Q(µ∞)), x 7→ (1, µn, µ2
n, · · · , µn−1

n ),

where µn is a primitive n-th root of unity (recall that x is represented by a one-dimensional
representation!). So Q(µ∞)⊗RU(Cn) ∼= ∏Cn

Q(µ∞) by 2.11, as we can change the first coordinate
1 arbitrarily by an element of Q(µ∞) and the rest of the tuple is determined by this Cn-action.

Example 2.14. Let G = Σm and consider

χ : RU(Σm) → Cl(Σm, Q(µ∞))“Z×
.

Recall that an [σ] ∈ Σm/ conj is determined by the length of the cycles in the cycle decomposition.
The action “Z× ⟳

Σm/ conj can be describedby sending [σ] ∈ Σm/ conj to [σℓ] where we really
mean the image of ℓ under “Z× → (Z/|σ|)×. Since |σ| = lcm(length of cycles) we conclude that
σℓ has the same cycle decomposition as σ, as ℓ is relatively prime to the length of every cycle. In
other words, the “Z×-action is trivial on Σm/ conj. In particular, “Z× only acts on the target of
Cl(Σm, Q(µ∞)), so in particular, we get

χ : RU(Σm) → Cl(Σm, Q(µ∞))“Z× ⊆ Cl(Σm, Q)

using “Z× = Gal(Q(µ∞/Q)). On the other hand, those traces of these finite-order linear maps
defining χ are given by suitably adding up some roots of unity which in particular lands in the
ring of integers OQ

∼= Z. So we obtain a factorization

RU(Σm) Cl(Σm, Q)

Cl(Σm, Z)

2.3 Relation to Restriction and Transfer

Let φ : H → G, so we get a map φ/ conj : H/ conj → G/ conj which induces a map

Resφ/ conj : Cl(G, Q(µ∞)) → Cl(H, Q(µ∞)).

Fact 2.15. There is a commutative square

RU(G) RU(H)

Cl(G, Q(µ∞)) Cl(H, Q(µ∞))

Resφ

Resφ/ conj

Construction 2.16.

(i) Let H ≤ G. We define TrG
H : Cl(H, Q(µ∞)) → Cl(G, Q(µ∞)) by

TrG
H( f )([g]) =

1
|H| ∑

ℓ∈G
ℓgℓ−1∈H

f (ℓgℓ−1) = ∑
ℓH∈G/H
ℓgℓ−1∈H

f (ℓgℓ−1).

(ii) If φ : H ↠ G, then we define Trφ( f )([g]) = 1
| ker φ| ∑h∈φ−1(g) f (h).

1A conceptual way to think about this is to put ρ(g) in Jordan normal form.
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2.4 Power Operations

Let G

⟳

V, then we obtain G ≀ Σm = (G×m ⋊ Σm)

⟳

V⊗m.

Definition 2.17. Let [V] ∈ RU(G). We define Pm([V]) = [V⊗m] ∈ RU(G ≀ Σm).

Observation 2.18.

(i) Additivity fails: As vector spaces we have (V ⊕ W)⊗m =
⊕

i+j=m
(m

i

)
V⊗i ⊗ W⊗j.

(ii) The failure of additivity is controlled by transfer maps: One can show

Pm([V] + [W]) = Pm([V]) + ∑
i+j=m
i,j>0

TrG≀Σm
G≀Σi×G≀Σj

(
Pi([V]) ⊠ Pj([W])

)
.

Idea. Let G = e and m = i ∪ j. Then, there is an inclusion

V⊗i ⊗ W⊗j ↪→
⊕

X⊆m
|X|=i

V⊗X ⊗ W⊗(m\X)

where the right side is a Σm-representation (because we can swap around elements in m) while
the left side is a (Σi × Σj)-representation. This is a (Σi × Σj)-equivariant map. We can extend this
to a Σm-equivariant map via the left adjoint C[Σm] ⊗C[Σi×Σj] −. You can check that this yields
an isomorphism

C[Σm] ⊗C[Σi×Σj]

Ä
V⊗i ⊗ W⊗j

ä ∼−→
⊕

X⊆m
|X|=i

V⊗X ⊗ W⊗(m\X).

Construction 2.19. We still need to extend Pm from G-representations to virtual G-representations.

(i) Let P0(−[V]) = 1.

(ii) Let P1([V]) = −[V].

(iii) Let Tri,j = Tr
G≀Σi+j
G≀Σi×G≀Σj

. We use induction to define Pm on RU(G), e.g.

0 = P2([V] +−[V]) = P2([V]) + Tr1,1([V] ⊠ (−[V])) + P2(−[V]),

so P2(−[V]) = Tr1,1([V] ⊠ [V]) − P2([V]).

Example 2.20. You can check

P2 : Z ∼= RU(e) → RU(Σ2) ∼= Z[x]/(x2 − 1), k 7→ k2 + k
2

+
k2 − k

2
x.

Here are some properties of the Pm’s.

Proposition 2.21.

(i) Special values: P0(x) = 1, P1 = id.

(ii) Pm(x + y) = some big sum as above.

(iii) ResG≀Σm
G≀Σi×G≀Σj

(Pm) = Pi ⊠ Pj.
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Observation 2.22. About the failure of additivity, let

Im = im

Ü
⊕

i+j=m
i,j>0

Tri,j

ê
⊆ RU(G ≀ Σm)

be the ideal that controls additivity. So Pm/Im : RU(G) → RU(G ≀ Σm)/Im is additive, it is also
called the total additive power operation.

Example 2.23. There is an isomorphism RU(Σm)/Im ∼= Z.2 Then, it turns out that the composite

χ[(1 ··· m)] : RU(Σm) → RU(Σm)/Im ∼= Z

is the character map evaluated at the long cycle.

2.5 Interaction with the Character Map

Here is a new concept:

Definition 2.24.

(i) An integer partition of m, denoted λ ⊢ m is a function λ : N>0 → N such that ∑i λii = m.

(ii) An integer partition of m decorated by G/ conj is a function

λ : N>0 × G/ conj → N, ∑
i,[g]

λi,[g]i = m.

Denote the set of such decorated integer partitions by Parts(m, G/ conj).

In other words, we remember by λi the number of times that i appears in an integer partition of
m and each of these we decorate by a symbol [g] ∈ G/ conj. If we want to even remember this
decoration, we take a finer function and let λi,[g] remember that decoration.

Lemma 2.25. There is a canonical bijection (G ≀ Σm)/ conj ∼= Parts(m, G/ conj).

Idea. Let σ = (1 · · · m). Then, (g1, · · · , gm, σ) ∼ (gm · · · g1, e, · · · , e, σ).

Proposition 2.26. The function

Pcl
m : Cl(G, Q(µ∞)) → Cl(G ≀ Σm, Q(µ∞)), f 7→ (λ 7→ ∏

i,[g]
f ([g])λi,[g])

makes the diagram

RU(G) RU(G ≀ Σm)

Cl(G, Q(µ∞)) Cl(G ≀ Σm, Q(µ∞))

χ

Pm

Pcl
m

commute.
2Nat is not sure what the most beautiful proof of this is.
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2.6 Symmetric Powers and Adams Operations from Power Operations

Here is a big diagram.

Construction 2.27. Start with the horizontal composite.

RU(G)

RU(G) RU(G ≀ Σm) RU(G × Σm)

RU(G) ⊗ RU(Σm)

RU(G)

βm :V 7→V⊗m/Σm

Pm

Ψm

Res∆

TrG
G×Σm

∼=

idRU(G) ⊗χ[(1 ··· m)]

Once we have reached RU(G × Σm), we have two ways of getting back to RU(G). The upper
part follows because transfering along a surjection is given by modding out the kernel (2.4(ii)).
The map Ψm is the m-th Adams operation which is additive since χ[(1 ··· m)] factors through
RU(Σm)/Im by 2.23.

The fun thing is that there are formulas for everything. In terms of class functions (there is some
abuse of notation going on here):

Proposition 2.28.

(i) (Res∆ Pm)( f )([g], τ ⊢ m) = ∏i f ([gi])τi ,

(ii) Ψm( f )([g]) = f ([gm]),

(iii) βm( f )([g]) = 1
m! ∑τ⊢m

m!
∏i(i

τi τi !) ∏i f ([gi])τi = ∑τ⊢m
1

∏i τi ! ∏i

(
f ([gi])

i

)τi
.

Corollary 2.29. There is an equality ∑
m≥0

βmtm = exp

Ç
∑
k>0

Ψk

k
tk

å
.

Proof. Check using the above formulas.

The division by k should concern us homotopy theorists, it seems to live in (Q ⊗ RU(G))JtK. But
it in fact lives in the divided power series ring RU(G)⟨⟨t⟩⟩ ⊆ (Q ⊗ RU(G))JtK.

3 Burnside Rings

Some of the discussion from last lecture prompts another gadget in global algebra, namely LECTURE 3
global power functors, which are global Green functors P together with maps P(G) → P(G ≀ Σn).

3.1 Definition and First Example

Today, we will try to speedrun a lot of the material that is analogous to the previous section.

Construction 3.1. The Burnside ring A(G) is the Grothendieck ring of (Fcore
G ,⨿,×).

The connection to (equivariant) homotopy theory is that it arises as πG
0 (SG).
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Observation 3.2. The building blocks for G-sets are transitive G-sets and G/H ∼= G/K if
and only if H and K are conjugate. Thus, additively A(G) is the free abelian group on the
isomorphism classes of transitive G-sets, i.e. let Conj(G) = Sub(G)/ conj, then

A(G) ∼=
⊕

[H]∈Conj(G)

Z{[G/H]}.

So additively, it’s pretty simple and we wish to understand it multiplicatively. You can actually
do a little better than for RU, it’s at least easier. To understand the multiplicative structure we
need:

Observation 3.3. There is an isomorphism

G/H × G/K ∼= ⨿
HgK∈H\G/K

G/(Hg ∩ K)

in FG.

Example 3.4. Consider A(Cp). There are two isomorphism classes of transitives, namely
[Cp/Cp] = 1 and [Cp/e] = x. So we need to understand x2 to understand the multiplication of
this ring. Note that the product of any G-set with a free G-set, we get a disjoint union of free
G-sets. Or consider the double coset isomorphism from above (3.3) to see

Cp/e × Cp/e ∼= ⨿
e\Cp/e

Cp/e,

so x2 = px. Thus, A(Cp) ∼= Z[x]/(x2 − px). In particular, rk A(Cp) = 2 in contrast to
rk RU(Cp) = p.

3.2 Linearization

Here is one relation of A(G) and RU(G).

Construction 3.5. Consider the linearization map L : A(G) → RU(G), [G

⟳

X] 7→ [G

⟳

C{x}].
This is a ring homomorphism.

Example 3.6. Can check for G = Cp that it is injective.

Example 3.7. It is not injective or surjective: Consider G = C2 × C2. The left side has rank 5 and
the right side has rank 4. A fun exercise is to write down an element in the kernel of L.

3.3 Restrictions & Transfers & External Multiplication

Here is some more structure.

Construction 3.8. Let φ : H → G.

(i) The map Resφ : A(G) → A(H), [G

⟳

X] 7→
[

H
φ−→ G

⟳

X
]

is a ring map.

(ii) The map Trφ : A(H) → A(G), [H

⟳

X] 7→ [G

⟳

G ×H X] is additive.

These satisfy the double coset formula and Frobenius reciprocity. This endows the Burnside
ring with the structure of a global Green functor. In fact, it is the initial global Green functor.
(This fact is a fun exercise.)

Example 3.9.

8
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(i) Let H ≤ G. Then, TrG
H([H/K]) = [G ×H H/K] = [G/K]. So TrG

H sends basis elements to
basis elements. This is a big difference between A(G) and RU(G) and is really helpful to
show that A is the initial global Green functor.

(ii) Let G → e. Then, Tre
G([X]) = [e ×G X] = [X/G] = |X/G| ∈ A(e), i.e. this is counting the

number of G-orbits in X.

Construction 3.10. There is an external multiplication

⊠ : A(G) ⊗ A(H) → A(G × H), [G

⟳

X] ⊗ [H

⟳

Y] 7→ [(G × H)

⟳

(X × Y)].

This is not generally an isomorphism, for G = H = C2 the left side has rank 4 while the right
side has rank 5. It is an isomorphism more often than you think, for example if gcd(|G|, |H|) = 1.

3.4 Character Theory

It turns out that these Burnside ring admit character maps that are extremely well behaved.

Definition 3.11. Let Marks(G, Z) = Fun(Conj(G), Z) which people also call the ghost ring or
the ring of superclass functions.

This terminology comes from the table of marks.

Construction 3.12. The character map is χ : A(G) → Marks(G, Z), [G

⟳

X] 7→ ([H] 7→ |XH |).

Fact 3.13. It is an injective ring homomorphism and rationally an isomorphism.

Thus, this is much easier than in the RU case, as the coefficient ring is just Z or Q. There is no
Q(µ∞). Once again, you can ask for restrictions and transfers on Marks that are compatible with
the ones on A(G).

Construction 3.14.

(i) Restriction is induced by precomposition.

(ii) For H ≤ G have TrG
H( f )([K]) = ∑gH∈G/H

Kg⊆H
f ([Kg]) similar to the RU story.

For surjections, the story is interesting. Over Q one gets an isomorphism and could just
get a formula by inverting a matrix which people have done. But there is hope for a nice
story. The hope is based on Tre

G( f )(e) = 1
|G| ∑g∈G f ([⟨g⟩]) by Burnside’s orbit counting

lemma. It’s very hard to see that this is the same formula as the one obtained for inverting
the matrix. You can wonder about other transfers of this kind.

These are compatible with the formulas on class functions.

Construction 3.15. There is a map L : Marks(G, Z) → Cl(G, Q(µ∞)), f 7→ ([g] 7→ f ([⟨g⟩]))
compatible with the previous linearization map (3.5). This is compatible with restriction and
transfer.

3.5 Power Operations

Now to power operations.

Definition 3.16. There are power operations given by

Pm : A(G) → A(G ≀ Σm), [G

⟳

X] 7→ [(G ≀ Σm)

⟳

X×m].

9
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Again, this is not additive but the failure is measured by transfers. It satisfies all the same
formulas as in the previous section. So this seems very similar to the RU story. But that’s
actually where the stories begin to diverge: Something special happens!

Observation 3.17. Consider Pm([G/H]) = [(G/H)×m] but G/H×m ∼= (G ≀ Σm)/(H ≀ Σm) in FG≀Σm .
So Pm sends basis elements to basis element.

Example 3.18. Let G = e. Consider Pm : Z → A(Σm). Then,

0 7→ 0,
[e/e] = 1 7→ [Σm/Σm] = 1

1 + 1 = 2 7→ ∑
i+j=m

TrΣm
Σi×Σj

(Pi(1) ⊠ Pj(1))

= ∑
i+j=m

TrΣm
Σi×Σj

([(Σi × Σj)/(Σi × Σj)])

= ∑
i+j=m

[Σm/(Σi × Σj)]

Something interesting seems to happen since only special subgroups of Σm show up (namely
those of the form Σi × Σj). Continuing, we see that elements in the image of Pm are built out of
Σm-sets of the form [Σm/Σλ] where λ ⊢ m, i.e. ∑i λii = m and Σλ = ∏i Σ×λi

i . These are called
the Young subgroups of the symmetric groups.

This suggests that the image of the total power operation is smaller than you would expect it to
be. This is very different from the RU case.

Definition 3.19. Let Å(G, m) ⊆ A(G ≀ Σm) be the span of the smallest collection of basis elements
(in the preferred basis) such that the span contains Pm(A(G)).

Here are equivalent constructions of Å(G, m).

(i) A G ≀ Σm-set X is called submissive if there is an embedding X ↪→ Y×m of G ≀ Σm-sets for
some G-set Y.

It turns out that G ≀ Σm-sets are closed under ⨿,×, for example X ⨿ X′ ↪→ (Y ⨿ Y′)×m.

Then, Å(G, m) is the Grothendieck ring of isomorphism classes of submissive G ≀ Σm-sets.
(It’s a good exercise to try to do this, it is not that hard.) In particular, this shows that
Å(G, m) is a ring.

(ii) Let Parts(G, m) denote the set of Conj(G)-decorated integer partitions of m. In other words,
an element is a function λ : Conj(G) × N>0 → N such that ∑[H],i λ[H],ii = m. Then, there
is a map

α : Parts(G, m) → Conj(G ≀ Σm), λ 7→
[

∏
[H],i

(H ≀ Σi)×λ[H],i

]
If G = e, then this is already interesting: We are picking out Young subgroups using
integer partitions.

It is a fact that α admits a preferred retract β. Let Parks(G, m) = Fun(Parts(G, m), Z). Then,
there is a pullback square

Å(G, m) A(G ≀ Σm)

Parks(G, m) Marks(G ≀ Σm, Z)

⌟
χ

β∗

10
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We win

A(G) Å(G, m) A(G ≀ Σm)

Marks(G) Parks(G, m) Marks(G ≀ Σm)

Pm

χ

Pmarks
m β∗

and now Parks(G, m) is quite combinatorial, so we can just write down

Pmarks
m : f 7→

(
λ 7→ ∏

[H],i
f ([H])λ[H],i

)
.

The point is that giving to composite Marks(G) → Marks(G ≀ Σm) is hard since the group
Marks(G ≀ Σm) is not very combinatorial. However, we can realize that Pm lands in a
smaller ring which itself has its own character theory which is very combinatorial in
nature. That allows us to give a power operation formula as desired on the level of marks!

We tried to focus on aspects of A(G) that are different from RU(G) and this is an important
difference!

4 Morava E-Theory
LECTURE 4

4.1 Prelude: p-adic K-theory

Let KUp = KU∧
p . There are maps

RU(G) KU0(BG) KU0
p(BG).

and let us now make some comments about this:

• The first map is defined as follows: Start with G

⟳

V, in other words we have a G-vector
bundle over ∗ and take the pullback

EG × V V

EG ∗

⌟

and quotienting by G yields EG ×G V → BG. In more modern terms, we take the
homotopy orbits V 7→ VhG.

• By the Atiyah-Segal completion theorem we have KU0(BG) ∼= RU(G)∧Iaug
with augmentation

ideal Iaug = ker(RU(G) → Z). However, this is rather poorly behaved as a Z-module.

• There is an isomorphism

KU0
p(BG) ∼= RU(G)∧(p)+Iaug

∼= Zp ⊗ RU(G)/J

with J = ker(res : RU(G) → RU(S)) where S ≤ G is any p-Sylow subgroups. Nat learned
this from a paper of Strickland. Note that RU(G)/J ∼= im res but RU(S) is a free abelian
group, so RU(G)/J is one as well which we just base change to Zp. So the result is a free
Zp-module!

11
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It turns out that rkZp KU0
p(BG) = |Gp/ conj | where

Gp = set of p-power order elements in G
= HomGrp(Top)(Zp, G).

Because G is a finite discrete group, a continuous map Zp → G must factor through
some Zp/pkZp ∼= Z/pk, hence the second equality. More detailedly, the kernel (i.e. the
preimage of 0) must be open and thus contain some open neighbourhood of 0, so in
particular some pkZp. Now G acts on HomGrp(Top)(Zp, G) by conjugation.

Example 4.1.

(i) We have KU0
p(BZ/pk) ∼= Zp[x]/(xpk − 1) because Z/pk is a p-group, so J = 0.

(ii) We have KU0
p(BH) ∼= Zp where p ∤ |H| because then there are no p-power order elements

in H. So from the perspective of p-adic K-theory, BH is a point.

There is a very nice character theory for p-adic K-theory due to Adams. See [Ada78] (or rather
the second paper of that installment).

Construction 4.2. He constructs a character map

χ : KU0
p(BG) → Clp(G, Qp(µp∞ ) = HomSet(Gp/ conj, Qp(µp∞ )).

Let α : Zp → G picking out a map of p-power order, by adjunction we need to give a map
KU0

p(BG) → Qp(µp∞ ) depending on α. Note that there is a factorization

Zp G

Z/pk

α

α

so we get a map

KU0
p(BG) KU0

p(BZ/pk) ∼= Zp[x]/(xpk − 1) Zp[x]/Φpk (x) Qp(µp∞ )α∗

and in fact you can construct the character map for RU exactly like this as well. Note that the
character map is a sort of restriction as signified as the restriction map α∗.

Adams proved that this is an injective ring homomorphism and that it is an isomorphism after
base changing to Qp(µp∞ ).

4.2 What is Morava E-Theory?

It’s a challenge to talk about this in a few minutes. The theory is not hard but it requires some
algebro-geometric language to carefully say what is going on. That’s the challenge.

Let k be a perfect field of characteristic p and let Γ/k be a height n formal group law over k, i.e.
an element x +Γ y ∈ kJx, yK satisfying

(i) x +Γ 0 = x,

(ii) (x +Γ y) +Γ z = x +Γ (y +Γ z),

(iii) x +Γ y = y +Γ x.

12
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Here, height n means [p]Γ(x) = x +Γ · · ·+Γ x = xpn
+ · · · .

Example 4.3. The formal group law x +“Gm
y = x + y + xy over Fp is of height 1.

Fact 4.4 (Goerss-Hopkins-Miller). This data determines a K(n)-local E∞-ring E = E(Γ, k) called
Morava E-theory with even periodic homotopy groups

π• ∼= W(k)Ju1, · · · , un−1K[β±1]

with |β| = 2.3

Remark 4.5.

(i) If k = Fp, then W(Fp) ∼= Zp.

(ii) The ring π0E ∼= W(k)Ju1, · · · , un−1K is called Lubin-Tate ring and is a complete local ring.
Moreover, W(k) is also a complete local ring with maximal ideal (p) and residue field k.

The Lubin-Tate ring carries the universal deformation of Γ/k.

Observation 4.6. Since E is a spectrum, the associated cohomology theory determines a global
Mackey functor by plugging in BG for finite groups G. Since E is a homotopy commutative
ring spectrum, the associated cohomology theory determines a global Green functor. Since E is
an E∞-ring spectrum, we even get a global power functor. Since E is K(n)-local, we get transfers
along surjections.

(i) Power Operations: Consider BG → E. Can take

B(G ≀ Σm) BG×m
hΣm

E⊗m
hΣm

E≃ µm

In other words, we obtain a map Pm : E0(BG) → E0(BG ≀ Σm).

(ii) K(n)-Local Transfers: Let E∧
0 (BG) = π0LK(n)(E ⊗ BG). By K(n)-local Tate vanishing4 there is

a preferred isomorphism E0(BG) ∼= E∧
0 (BG). So given φ : H → G we can define

Trφ : E0(BG) ∼= E∧
0 (BH) E∧

0 (BG) ∼= E0(BG).
E∧

0 (Bφ)

Since E is even periodic (and thus complex orientable), we get E0(BS1) ∼= E0JxK which is the
ring of functions on a formal group. This isomorphism is not canonical and it is better to think
of the right side as the ring of functions. We will write

GE = Spf E0(BS1) : Algcompl,loc
E0 → Ab, (R,mR) 7→ (mR, 0,+GE ).

where Algcompl,loc
E0 means complete local E0-algebras.

Example 4.7. Let k = Fp and Γ = x + y + xy = x +“Gm
y. In this case, [p]“Gm

(x) = xp + · · · , i.e. it

has height 1 and it turns out that E(“Gm, Fp) ≃ KU∧
p .

These Morava E-theories play the role of Q in chromatic homotopy theory and is the main
gadget we have to access the K(n)-local category.

Proposition 4.8. There is an isomorphism Spf E0(BZ/pk) ∼= GE[pk] ∼= Spf E0JxK/[pk]GE (x).5

Proof Idea. This is a Gysin sequence argument and uses the fact that [pk]GE (x) is not a zero
divisor in E0JxK.

The first isomorphism is canonical, the second one isn’t.
3The isomorphism is non-canonical.
4This is a result from Greenlees-Sadofsky-Kuhn and also Strickland was involved in thinking about this.
5The notation means pk-torsion. In the functor of points description, it outputs the pk-torsion of mR.
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4.3 HKR Character Theory

The analogue of Q(µ∞) in this story is a Q ⊗ E0-algebra C0 = Q ⊗ D∞ where D∞ is the Drinfeld
ring at infinite level. One can write

GE[pk]×n ∼= HomGrp(Sch)(C
×n
pk , GE) ⊇ Level(C×n

pk , GE)

where we write Cpk instead of Z/pk to think of this as its Pontryagin dual. Here, the idea is that
Level caputures the injective maps C×n

pk ↪→ GE. Injective is not something you can say for the
sake for functoriality but a good approximation for injective is a map Cpk × n → GE such that
the image of any subgroup is one of the same size on the right side.

Example 4.9. One computes OLevel(Cp,GE)
∼= E0JxK/⟨p⟩GE (x) where ⟨p⟩GE (x) =

[p]GE (x)
x . In other

words, we want a p-torsion point which is not 0. The not being 0 part is for the injectivity.

The ring of functions of Level(C×n
pk , GE) is much harder to describe. It was studied by Drinfeld

and is extremely well behaved, e.g. it is a complete local domain, but writing it down in terms
of generators and relations is super hard.

There is a natural map
Level(C×n

pk , GE) → Level(C×n
pk−1 , GE)

by restricting to the pk−1-torsion. So this induces a map on rings of functions in the opposite
direction.

Definition 4.10. We define D∞ = colimk OLevel(C×n
pk ,GE) = OLevel(C×n

p∞ ,GE).

Precomposition defines an action GLn(Zp)

⟳

OLevel(C×n
p∞ ,GE) and it turns out that DGLn(Zp)

∞
∼= E0

is the Lubin-Tate ring.

Fact 4.11. There is an isomorphism

Q ⊗ E0(B(Z/pk)×n)/Itr ∼= Q ⊗ OLevel(C×n
pk ,GE)

with Itr = im
(⊕

A⊊(Z/pk)×n Tr(Z/pk)×n

A

)
.

This gives a topological way of thinking about these level structures, at least after rationalization.
More about this stuff can be read in [Sta20].

Let G[n]
p = HomGrp(Top)(Z×n

p , G)/ conj. Then, the HKR character map is a map

χ : E0(BG) → Cln,p(G, C0) = HomSet(G[n]
p , C0)

which is constructed like Adams’ character map, i.e. given α : Z×n
p → G there is a factorization

Z×n
p G

(Z/pk)×n

α

α

so we can take

E0(BG) E0(B(Z/pk)×n) Q ⊗ E0(B(Z/pk)×n)/Itr C0
α∗

14
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using 4.11 in the last map.

Theorem 4.12. The map χ is a ring map, is injective if E0(BG) is torsion-free, and C0 ⊗E0 χ is an
isomorphism.

We know that E0(BG) is not always torsion-free but at least it is in the cases we care about.

Corollary 4.13. There is an isomorphism Q ⊗ χ : Q ⊗ E0(BG) ∼−→ Cln,p(G, C0)GLn(Zp).

Proof. Take GLn(Zp)-fixed points.

Theorem 4.14 (Strickland). Let Itr = im

Ç⊕
i+j=m
i,j>0

TrΣm
Σi×Σj

å
⊆ E0(BΣm). Then, E0(BΣm)/Itr is a

free E0-module and
Spf E0(BΣm)/Itr ∼= Subm(GE)

where the right side denotes subgroup schemes of order m.

We know that

E0 E0(BΣm) E0(BΣm)/Itr

is a ring map and work of AHS gave an algebro-grometric interpretation. This is like the first
ring map you can build out of the total power operation. So this allows us to use algebraic
geometry to construct operations on Morava E-theory.

Construction 4.15. Let us redraw the big diagram that we already drew for RU (see 2.27).

E0(BG)

E0(BG) E0(BG ≀ Σm) E0(BG × BΣm)

E0(BG) ⊗E0 E0(BΣm)

E0(BG) ⊗E0 E0(BΣm)/Itr

E0(BG)

βm

Tpk

Pm

TrG
G×Σm

≃

1⊗∑ ℓA

where 1 ⊗ ∑ ℓA only works for m = pk. It was easier to get back down to E0(BG) in the
RU-setting. So βm is the symmetric powers operator and Tpk is the pk-th Hecke operator.

In Ganter’s thesis:

Theorem 4.16 (Ganter). We have ∑m≥0 βmtm = exp
Å

∑k≥0
Tpk

pk tpk
ã

.

So you can find a suitable logarithm. There are Adams operations on Morava E-theory but
these Hecke operators take the position of the Adams operations in analogous relation with the
symmetric powers.

In the final lecture we are going to try to understand where these exponential relations come
from and we will try to produce a universal exponential relation.
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5 Partition Functors & Universal Exponential Relations

This is joint work with Mehrle and Rose. This talk is a little different from the previous one LECTURE 4
in the sense that it has to do with current research. These are some ideas that came out of the
Kentucky seminar three years ago.

5.1 Motivation and Goals

Definition 5.1. A global Mackey functor is a pair of functors

M∗ : Gloop → Ab, M∗ : Gloinj → Ab

with M∗(G) = M∗(G) and which satisfy a double coset formula.

Here, Glo is a (2, 1)-category of groups. As Ab is a 1-category, we obtain that conjugate maps
go to the same map. In other words, inner automorphisms go to the identity maps.

Recall the exponential relations (2.29) on RU given by

∑
m≥0

βmtm = exp

(
∑
k≥1

Ψk

k
tk

)

which lives in RU(G)⟨⟨t⟩⟩ ⊆ (Q ⊗ RU(G))JtK where elements on the left side are of the form
∑i≥0 ri

ti

i! .

If R is a global power functor, then there is always the composite

Pm/Itr : R(e) R(Σm) R(Σm)/Itr
Pm

which is additive. Our goal today is to describe an exponential relation of the form

∑
m≥0

Pmtm = exp

(
∑
k≥1

Pk/Itrtk

)

specializing to give the exponential relations we’ve described.

But if you look at this, it doesn’t really seem to typecheck. So the first part of this talk is to try to
find a home for an exponential relation like this.

5.2 Partition Functors

You should think about these things to being similar to global Mackey functor. Replace Glo by
a (2, 1)-category of partitions P.

Definition 5.2. Let P be a (2, 1)-category given by:

• Objects: Λ = (X,∼Λ) with a finite set X,

• Maps: Let Λ = (X,∼Λ), Ω = (Y,∼Ω). A map is a bijection f : Λ → Ω such that
x ∼Λ x′ =⇒ f (x) ∼Ω f (x′).

• 2-Maps: Let ΣΩ denote the automorphisms of Ω that are identity mod ∼Ω. Now, let
f , g : Λ → Ω, then a 2-morphism σ : f ⇒ g is an element in ΣΩ such that σ f = g.

In particular, there is at most one 2-morphism between any two 1-morphisms, so P is equivalent
to a 1-category. However, this formulation is easier to compare to Glo. It’s also a graded
category and symmetric monoidal with respect to ⨿.
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Example 5.3. Endow m with the indiscrete relation (i.e. identify every element). Then, Σm = Σm
but Σi⨿j = Σi × Σj.

Definition 5.4. We say Λ ≤ Ω if X = Y and idX is a map of partitions.

Definition 5.5. A partition functor M is a pair of functors

M∗ : Pop → Ab, M∗ : P → Ab

such that M∗(Λ) = M∗(Λ) and satisfying a double coset formula.

Example 5.6. Fix a group G. There are two functors

G ≀ Σ(−) : P → Glo, G × Σ(−) : P → Glo

of (2, 1)-categories. Can restrict a global Mackey functor along these to get a partition functor.

5.3 The monad Div

This monad plays the role of integer-valued class functions on symmetric groups.

Construction 5.7. Let M be a partition functor and let

IΩ = im

(⊕
Γ<Ω

(Γ < Ω)

)
≤ M(Ω).

If Ω ≤ Λ and σ ∈ ΣΛ, then σΩ ≤ Λ inducing and isomorphism M(Ω)/IΩ
∼−→ M(σΩ)/IσΩ. We

define

Div(M)(Λ) =

(⊕
Ω≤Λ

M(Ω)/IΩ

)ΣΛ

.

There is a summand M(Λ)/IΛ sitting inside.

Proposition 5.8. This Div(M) is a partition functor and the functor Div is a monad.

Proof Idea. A lot of bookkeeping but not so hard.

The restriction is given by projecting onto the respective summands. The trace is some sort of
double coset formula. The most important map for today’s purposes is the unit map of the
monad. This unit map η : M(Λ) → Div(M)(Λ) is given by

M(Λ) M(Ω) M(Ω)/IΩ

componentwise where the first map is restriction. Moreover, the monad multiplication map
Div(Div M) → Div M has to do with this distinguished summand sitting inside Div M.

Since P is symmetric monoidal, there are a lot of multiplicative structures you can try to put on
partition functors, e.g. (lax) symmetric monoidal partition functors, partition rings, and so on.

Remark 5.9. Restricting a global Green functor to a partition functor (5.6) yields a partition ring.

Definition 5.10. A partition power functor is a partition ring R equipped with multiplicative
operations Pm : R(1) → R(m) satisfying the usual identities.

The point of this is that global Green functors have a lot of information and a partition power
functor is precisely the minimal information you need to talk about power operations on a
single group by virtue of the restrictions (5.6).
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Fact 5.11. The functor Div is a monad on all of these categories.

Example 5.12 (The initial partition ring). Since the Burnside functor is the initial global Green
functor, you might think that the initial partition ring is something like the Burnside ring of ΣΛ.
It turns out that it not quite correct.

Let Å(Λ) ⊆ A(ΣΛ) be the subgroup generated by elements of the form [ΣΛ/ΣΓ] for Γ ≤ Λ, i.e.
the Young subgroups of ΣΛ. These assemble into a partition ring. This is the initial partition
ring.

It’s way smaller than A(ΣΛ) where you can mod out by any subgroup of ΣΛ! Here is a
surprise(?):

Fact 5.13. The composite

Å(Λ) A(ΣΛ) RU(ΣΛ)L

is an isomorphism. In particular, RU(Σ(−)) is the initial partition ring.

Observation 5.14. One can check RU(ΣΛ)/IΛ
∼= Z. So

Div
(
RU(Σ(−))

)
(m) =

(⊕
Ω⊆m

Z

)Σm

∼=
⊕
λ⊢m

Z = Cl(Σm, Z).

Moreover, η : RU(Σm) → Div(RU(Σ(−)))(m) is the character map.

This is probably the most important example and it shows the difference of partition rings to
global Green functors, the initial objects are quite different!

5.4 Symmetric Functions in R

Let R be a lax symmetric monoidal partition functor.

Definition 5.15. Let R[Σ] =
⊕

m≥0 R(m).

This is a graded-commutative ring via

R(i) ⊗ R(j) R(i ⨿ j) R(i + j)⊠
Tr

i+j
i⨿j

abusing the lax symmetric monoidal structure in the first map.

Definition 5.16. Let RJΣK = ∏m≥0 R(m).

This is still a ring (but no long graded). We are interested in the map

RJΣK → Div(R)JΣK = R⟨⟨Σ⟩⟩.

If R is a partition power functor we can consider

R(1) R(m)

R(m)/Im Div(R)(m)

Pm

Pm/Im

η

u

The left map is additive and the right triangle does not commute at all!

18



Qi Zhu Power Operations and Global Algebra

Theorem 5.17. Assume that R is a partition power functor. Then in R⟨⟨Σ⟩⟩ we have

∑
m≥0

ηPmtm = exp

(
∑
k≥1

uPk/Iktk

)
.

Corollary 5.18. Let S be a lax symmetric monoidal Div-algebra and R → S be a map of lax
symmetric monoidal partition functors. Then, there is a factorization

R S

Div(R)

and thus an exponential relation over S.

Nat was very excited about this when he first understood it but it turns out that it is not as
powerful as hoped for because in practice it is pretty hard to construct maps R → S. But you
can prove a stronger theorem under stronger hypothesis.

Theorem 5.19. Let R be a symmetric monoidal partition ring and R(m)/Im be a flat R(0)-module
for all m ∈ N. Then, Div(R)[Σ] is the divided power envelope of R[Σ] (with ideal given by
elements in grading > 0).

This is just a statement in algebra now. It is powerful enough to recover all the exponential
relations out there (e.g. 2.29, 4.16) from 5.17 which thus should be viewed as a sort of universal
exponential relation.
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