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Abstract

These are my (live) TeX’d notes of the European Talbot 2025 mentored by Gijs Heuts and
Ishan Levy and Higher Algebra and Chromatic Homotopy Theory.

Here is the description of the workshop copied from the official website:

Chromatic homotopy theory originated from Quillen’s pioneering work on the connection
between complex-oriented cohomology theories and formal group laws. The development of
higher algebra has since provided a powerful framework to deepen this interplay, leading to
major breakthroughs in stable homotopy theory. Chromatic methods have proven essential
in understanding the structure of stable homotopy groups of spheres. This workshop will
first introduce the foundations of higher algebra before exploring the structural properties
of key objects in chromatic homotopy theory, such as Morava E- and K-theories.

We plan to cover the following content:

¢ The fundamentals of higher algebra, including stable infinity-categories, (symmetric)
monoidal structures, (commutative) algebras, operads, and Koszul duality.

¢ Construction of the basic algebras of interest in chromatic homotopy theory, such as
MU, BP, and the Morava E-and K-theories.

* Power operations: the Dyer-Lashof algebra and power operations in the K(#)-local
setting.

¢ The structure of K(n)-local E-rings and their applications.

Please contact me at gzhu@mpim-bonn.mpg.de (or over social media) for comments or sug-
gestions.


qzhu@mpim-bonn.mpg.de
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0 Intro

We (around 40 young topologists) met in Kolding in Denmark to learn about higher algebra
and chromatic homotopy theory in this year’s European talbot. Mentored by Gijs Heuts and
Ishan Levy, we learned about the recent advances of this field.

Roughly, the following happened on the main mathematical sessions of each day:

* Day 1: Overview of higher categorical language (spectra, presentability, symmetric
monoidality, operads).

¢ Day 2: Most important players in chromatic homotopy theory (K(n), E,;, BP and their
multiplicative structures, monochromatic layers, descendability, ambidexterity).

* Day 3: Power operations (overview, Dyer-Lashof operations, [Ez-MU-structure on BP).

¢ Day 4: Synthetic methods (filtered spectra, spectral sequences, synthetic spectra and their
applications to algebraicity and obstruction theory to multiplicative structures).

¢ Day 5: Multiplicative structures on monochromatic layers (K(1)-local power operations,
chromatic Nullstellensatz and its applications).

Besides that, there were also various social events (canoe/kayak, independence day American
bbq, karaoke, ...) as well as mathematical evening sessions. This includes an improvised crash
course on complex-oriented cohomology theories, two question sessions and a chili session!

Remark 0.1. My notation and language is not always consistent with the speakers’ choices. I
also occassionally added some parts which were not included in the actual talks; such parts will
always be indicated by a star like Lemma*.

Acknowledgements. We thank Gijs Heuts and Ishan Levy for being wonderful mentors leading
us through the entire week.

Figure 1: Ishan answering questions at midnight.

We also thank the organizers Daniel Bermudez, Marie-Camille Delarue, Joao Fernandes, Hyeon-
hee Jin, Filippos Sytilidis and Maxime Wybouw for all their effort making this event possible!
Of course, we also thank all the speakers for preparing and giving nice talks throughout the
week. I'd also like to simply thank all participants all of whom I enjoyed interacting with.
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1 Overview (Ishan Levy)

This workshop is about higher algebra and chromatic homotopy theory. What is it even about? Tark 1
30.06.2025

1.1 Higher Algebra

In usual algebra you study algebraic structures in Set like Ring or Ab. In higher algebra Set is
replaced by the (co-)category of homotopy types or also called anima these days. But why?

Homotopy types show up quite a lot:
¢ geometric topology (e.g. surgery theory),
¢ algebraic invariants of varieties or arithmetic objects,
* natural from the viewpoint of category theory.

What is higher algebra? In usual linear algebra you work in abelian categories while in higher
algebra we work in stable co-categories. In linear algebra one cares about short exact sequences
while in higher algebra the analog is fiber sequences. There is an universal abelian category
which acts on others (admitting colimits), namely Ab and similarly in the higher algebra story

it is Sp. There is an embeddding Ab — Sp and both are symmetric monoidal with unit Z resp.
S.

Taking maps we get Homap(Z,Z) = Z and Mapsp(S, S) ~ colim, ()'S". Note that Z is the
initial associative/commutative ring while commutativity is more subtle in higher algebra.
There are operads parametrizing multiplications, particularly there is a family of operads
Eq,Ey, - - - ,Eq starting from the associative operad to the (most) commutative operad. There
are also some others like the Lie operad Lie. But you really need a lot of data to realize these
things. Working with operads is where a lot of the technicalities in higher algebra comes in.

Encoding algebras and algebra maps requires a lot of data. Here are some methods:
¢ Constructions: Thom spectra, K-theory, ...
¢ Deformation theory: Trying to build nonlinear objects like [Ej-algebras using linear data.

¢ Obstruction theory: Say you want to understand [E;-algebras. The key thing to understand
is free algebras, e.g. by computing homotopy groups of these. By the Yoneda lemma this
is essentially about understanding (power) operations. Algebras are built under colimits
from free ones. One example is to try taking pushouts

Free{x} —— R

| ]

1 — R

and maps out of them. So the top arrow picks out an element r € R and the existence of a
map R’ — S is obstructed by x becomes nullhomotopic in S.

* Descent: If f : R — S is faithfully flat, then Modg =~ limy,jcp Mod(S®®"). In higher
algebra descent is effective way beyond faithfully flatness! For example one can try to
understand descent along S — MU resp. 5 — IF, which leads to the ANSS resp. ASS.
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In higher algebra one often tries to study some object X € ¢ by finding a filtration on it. A
filtration on X is a functor Z — ¢, perhaps written as

Xi Xig — -+
with colim; X; o~ X. Here, one should particularly study the associated graded gr X;/X;1.
Example 1.1. Take the filtration (7>, X),, then its associated graded is 77 X.
A principle is that all spectral sequences come from filtered objects. In particular, one can apply
techniques from higher algebra to filtered objects!

1.2 Chromatic Homotopy Theory

What does an abelian group look like? One of the first things you learn is the structure theorem
of finitely generated abelian groups which leads to a primary decomposition of abelian groups.
So what does a spectrum look like?

Classically, we could consider Z — Q but this loses information which is captured in the
cokernel

7 — Q — Q/Z = @, colim Z/p*.
In higher algebra

S —— S[p~!:pprime] —— Q/S ~ @, colimy S/p*

~

Q

where we essentially use Serre’s finiteness theorem for the middle equivalence. In classical

algebra we would already be done but in higher algebra 77,5/p* has an element U’{l which
generates 77, /nilpotent. This leads to

278/ pf0 1y 8k —, 5/ plo, 1)

and (7.S/p*)[v; '] which is completely understood: It is a local ring of Krull dimension 0, i.e.

every element is a unit or nilpotent. We are not done: There is also vz € .S/ (pko 011) If we
keep going, we obtain a type n complex

X, =S/(pR 0y, o

and X,[0f '] is a so-called telescope of height n.

This was not very canonical but here is a functor one could write done:
. k kn—1 kny—1
Sp =+ Sprgy, X+ lim (X@S/(p",-- 0, ) @]

This is now ‘'more canonical’, it is for example symmetric monoidal. These gadgets essentially
capture the v,-periodic information.

Why does this happen? Consider
S —— MU —3 MURMU — ---
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which induces a spectral sequence HS(Mfg;w®t) = 725, the Adams-Novikov spectral
sequence (ANSS). For example, one now gets

v, € H° (Mfg,w®(pn_l)/(vo,' o ,Unfl))

for which one needs to obtain some understanding of the classification of formal groups.
One obtains!
Ly X =~ lign Lygy(X @ MU®*H).

The point is that the left side is a more computable version of T(n)-localization. One reason
for this is that it can be understood in terms of group cohomology: namely we have Ly X ~
(X®E,)"C" where one completely understands the homotopy groups

e Ey = W(Fp”)[[vlz' o /Unflﬂ[ﬁill

and in practice (—)"G" means that there is some spectral sequence starting in group cohomology
which one can then try to run.

The localizations L,, L{; glue together info of Lg(; resp. L for i < n. You can recover the
sphere spectrum from such local information!

Theorem 1.2 (Chromatic Convergence). There is an equivalence S,y ~ lim; L,5.

So L, and L} in principle see everything.” The finiteness in L} is that it is the universal functor
yielding S // X for some type n + 1 (finite!) complex X.

There are many cool properties of the monochromatic categories Lrt,)Sp resp. Lk)Sp.

¢ Ambidexterity: It feels a lot like working in characteristic 0. Let V be a rational vector
space with a G action, then the norm map Vg — V¢, x )¢ §X is an isomorphism.

The same thing happens in L1(,)Sp or L, Sp. For a 7-finite group G acting on X there is
anorm map X — X"G which is an equivalence.

¢ The K(n)-local [E-rings are really nice. For example, a free K(n)-local E«.-E,-algebra is at
the level of 77, a completed polynomial algebra over 77, E;.

¢ Bousfield-Kuhn functors: Usually, you cannot recover a spectrum from its underlying
space. By you can recover its T(n)-localization!

Lrgm

Sp
S

where ®,, is the Bousfield-Kuhn functor.

SP1(n)

2 Spectra and Stabilization (Yuqin Kewang)

TALK 2
2.1 Stable co-Categories 30.06.2025

This is a better notion than that of triangulated categories.

Essentially, the reason is that L K(ny and Lr(,) agree in Modyy and so it’s a question about showing that this
descent thing of S — MU converges in the K(n)-local category.

2In fact, L{: sees strictly more than L.
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Definition 2.1. Let 4" be an co-category.
(i) The co-category ¢ is pointed if 4" has a zero object 0 € €,
(ii) Let & be a pointed co-category. A triangle in ¢ is a diagram [1] x [1] — ¢ of the form

L>Y
8

O 4— X

— 7

(iii) A triangle is a fiber sequence resp. cofiber sequence if it is a pullback resp. pushout
square of the above form.

Example 2.2. Let ¢ = S,, s0 0 = . For X € S, we get loop space and suspension

OxX —— 0 X ——0
J

|

00— X 0 —— 2X

so we have a fiber sequence (30X — 0 — X and a cofiber sequence X — 0 — XX.
More generally, this can be performed in any pointed co-category.
Fact 2.3. There is an adjunction > - ).
Definition 2.4. An co-category ¥ is stable if
(i) the category ¢ is pointed,

(ii) every morphism in ¢ has a fiber and a cofiber,

(iii) every triangle in ¢ is a pullback if and only if it is a pushout.
Lemma 2.5. If ¥ is stable, then X - () is an equivalence of co-categories.
Proof. Consider the pullback square

aOx —— 0

|

0 —— X

so stability implies 20X ~ X. Similarly, X ~ OX.X. O
Fact 2.6. Let ¢ be a stable co-category. Then, 14 has the structure of a triangulated category.

Note that stability is a property while triangulation is structure. In particular, there are poten-
tially many possible triangulated structures that one can put on a 1-category.

What are examples of stable co-categories? One possibility is to consider stabilizations to con-
struct stable co-categories.

Definition 2.7. Let ¢ be an co-category which admits finite limits. Then, € also admits finite
limits and is pointed. Its stabilization is

Sp() =lim (--- & % £ .) € Cat.

Fact 2.8. The stabilization Sp(%) is a stable co-category.
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2.2 Spectra
We can finally define spectra.

Definition 2.9. The co-category
Sp = Sp(S.) = lim ( LA S*> ¢ Cato,
is called co-category of spectra.

Concretely, an object consists of {(X)n>0,n : Xn = 00X, 11} = X (and additional coherence
data) and similarly,

. (@) Q 0
Maps, (X, Y) = lim (-++ % Mapg (X, Y) > Mapg, (X1, Y, 1) & -+ ),

i.e. amap f : X — Y consists of the data f, : X;, — Y}, together with homotopies realizing the
commutativity of the diagram

X, —2 s,

5{ lr%

OXy1 g QY1

Example 2.10. For A € Ab its Eilenberg-MacLane spectrum is given by K(A4,1);>1 with
K(A,i) — QK(A,i+1).

Fact 2.11. The co-category Sp has all limits and colimits, in fact Sp is presentable. Limits and
filtered colimits can be computed levelwise.?

Note ((2X), = OX, >~ X,,_1, so one suggestive notation is (X = X[—1]. Similarly, XX = X[1].

Construction 2.12. There is a natural functor QO : Sp — S,, X — Xy which commutes with all
small limits. So it has a left adjoint £ : S, — Sp, X — (colim; V'X*"X),, with structure map

colim; Q'YX —=— Qcolim; QIXiTn+lxX

T, b

colim; Qitlyitnt+ly

where the right equivalence comes from finite limits commuting with filtered colimtis and the
diagonal equivalence is stability. The image of X* consists of the suspension spectra.

Example 2.13. The sphere spectrum is S = £*S°.

2.3 Spectra is Compactly Generated
Consider the co-category of pointed finite spaces Sf".

Definition 2.14. The co-category of finite spectra is
Spfi" = colim (an z, Sfin z . ) € Cate,.

So we can view every finite spectrum as ~ K for some finite space K.

3For limits this is always true for stabilizations. For filtered colimits this is due to filtered colimits commuting
with finite limits in S,.



Qi Zhu European Talbot 2025

Proposition 2.15. There is an equivalence Sp ~ Ind(Sp™).

Here, .
Ind(¢) = PShiltrd(4) C PSh(%) = Fun(¢°?, S)

is the free co-category generated freely under filtered colimits. Concretely, an object in Ind(%)
might suggestively be written as colim;c; F; for some F : I — ¢ with some filtered I and

Mapy, 4 <collim Fi, col]im Gj) ~ li§n col}im Map (Fi, Gj).

Proof of 2.15. First, Sp'™ C Sp consists of the compact objects. It’s a formal consequence that
Ind(Sp'") — Sp is fully faithful. So we need to show essential surjectivity. Let X € Sp which
we wish to be written as X ~ colim; Y; with Y; € Spﬁ“. This can be accomplished: An Yoneda
argument yields X =~ colim, X 7"2*X,. O

2.4 Connective Spectra is Grouplike [E..-Spaces

Being connective means 7r; = 0 for i < 0.

Definition 2.16. The 1-category of finite pointed sets is Fin,, i.e. objects are finite pointed sets
and morphisms are basepoint-preserving maps.

Definition 2.17. A commutative monoid in spaces (aka E.-space) is a functor M : Fin, — S
satisfying the Segal condition, i.e. that the map

n

(Xi)i - M((n)) = T [ M((1))

i=1
is an equivalence. Here,
1 j=i
Remark 2.18. Let M : Fin, — S be an E-space. Then, M = M((1)) € S is called underlying
space of M. We obtain a multiplication

xi:<n>—><1>,j»—>{

M x M «=— M({(2)) —— M((1)) = M

with m : (2) — (1), 1,2 — 1. One may check that this gives a monoid structure which is unital,
associative and commutative up to higher coherences.

Definition 2.19. An E-space M is group-like if the commutative monoid structure on roM is
a group. We denote the respective category by CMon®P(S).

Theorem 2.20 (Recognition principle). There is an equivalence of co-categories
B% : CMon®P(S) =2 Sp, : O%.
We omit the proof but give a construction of the functors.

(i) Delooping B* : CMon®P(S) — Sp.: It’s a fact that CMon(S) has a zero object and that
limits and colimits are computed levelwise. In particular,

QM : Fin, — S, (n) — QM((n)),

10
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so 11;(QQM) = 741 (M). This suggests
Q : CMon®P(S)>; — CMon®P(S).

The inverse of this is B which corresponds to 2 on CMon(S). In fact,
BM = colim (Fin* % A% — Fin, 5 S) ~ colim(--- M x M =t M — 0) € CMon(S).

Then, B*M = {(M, BM, B?M, - - -), B"M — QB"*1M} € Sp using that Q) is inverse to
B. Note that B®M is connective since 71—, (B®M) = my(B"M) = 0.

(i) One obtains
0% : Sp.y — CMon®P(S), E — (QVE : (n) — Q¥(X%(n) ® E)).
Note that OO*E is group-like because 7o(QQ*E) = moE is a group.

2.5 Examples

Let’s discuss some examples.

Example 2.21. There is connective complex K-theory ku. Consider
Vect : Fin, — S, (n) — {(V1,---,V,) € Gr" : V; L V;fori # j},

and amap f : (m) — (n) is sent to Vect(m) — Vect(n), (V1,---,Vy) — (@ief—l(]‘) Vi)1<j<n'

The Segal condition for
n
Vect((n)) — [ [ Vect((1)), (V1,--+, Vi) = (Vi, -+, Vi)
i=1

is an equivalence because Gram-Schmidt is an homotopy equivalence. Note 7p(Vect) = IN,
so we are not grouplike yet, but we can group complete to get ku = B*VecttP. In particular,
0O%ku ~ QB Vectsf ~ BU xZ.

Example 2.22. For each n there is a map
anzoo n
BO, - & —— Sp, *+— S§" — S.

There is a commutative diagram

BO, —— Sp

|~

Bon+1

which yields the [-homomorphism ] : BO — Sp. Then,
MO = colim(J : BO — Sp) and MU = colim (BU S BO L sp)

are the real/complex bordism spectra.

11
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3 Presentable Stable co-Categories and (Symmetric) Monoidal Struc-
tures (Julie Bannwart)

3.1 Symmetric Monoidal co-Categories and Their Algebra Objects

A symmetric monoidal 1-category consists of the data (¢, ® : ¢ x ¢ — ¢,1¢ € %) along with
isomorphisms witnessing associativity, commutativity, unitality and compatibilities.

Definition 3.1. A symmetric monoidal co-category is a functor ¢ : Fin, — Cat., such that
n
(Xii : €((n)) = [ [£((1))
i=1

is an equivalence.

By unstraightening, these correspond to coCartesian fibrations €“ — Fin, together with
the Segal condition. The coCartesian fibration condition is precisely to ensure some sort of
functoriality on fibers of this, so for every (n) — (m) we get a functor %ﬁ?) — ‘55%.

Think that the underlying co-category of ¢ is € (1) =~ %{%.
Proposition 3.2.

(i) Let ¢ be a symmetric monoidal 1-category. Then, there exists a symmetric monoidal
co-category N¢ such that N¢' (1) ~ N¢€.

(ii) Let € be a symmetric monoidal co-category. Then, h(%(1)) is a symmetric monoidal
1-category.

Proposition 3.3. Let ¢ be an co-category with finite (co-)products. Then, ¢ has a symmetric
monoidal structure with tensor product x (resp. II).

We write €* or €.

Classically, a lax symmetric monoidal functor consists of a functor F : ¢ — 2 together with maps
Ace : Fe® Fc' — F(c ® c'). 1t is a (strong) symmetric monoidal functor if A . are also equivalences.

Definition 3.4. Let 4%, 2 — Fin,. A lax (resp. strong) symmetric monoidal functor is a
diagram

z® a 7°
Fin,
such that F carries coCartesian lifts of inert* (resp. all) edges to coCartesian edges.

Note that a symmetric monoidal functor corresponds to a natural transformation € = 2 by
straightening-unstraightening but for lax ones one requires some lax natural transformation
notion.

Example 3.5. A symmetric monoidal functor between (co-)Cartesian symmetric monoidal
structures are exactly those preserving finite (co-)products.

This example is interesting because in general it’s hard to construct a (lax) symmetric monoidal
functor but in this case it’s considerably easier.

Classically, an algebra object E € (¢, ®, 1) consists of amap 14 - Eandamap EQ E — E
satisfying certain axioms.

*An inert edge in Fin, is an edge f : (n) — (m) such that f~1(i) is a singleton forall 1 < i < m.

12

TALK 3
30.06.2025
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Definition 3.6. A commutative algebrain p : ¥® — Fin, is a section of p which sends inert
edges to coCartesian ones.

In other words, it’s a lax symmetric monoidal functor Fin, — €.

Definition 3.7. An associative algebra in €% — Fin, is a commutative diagram

A°P cg@

~

Fin,

mapping convex” edges to coCartesian edges.
Example 3.8. A commutative algebra in S* is exactly an E-space as in Talk 2 (2.17).
So we introduce the notation CAlg(¢®) C Fun(Fin,, ¢®) and Alg(4*) C Fun(A°P,¢®).

Remark 3.9. For 1-categories there is an inclusion CAlg(%¢) C Alg(%) but this is false for
co-categories. We are really dealing with extra data in this higher setup.

Proposition 3.10. Let F : ¥ — 2% be a lax symmetric monoidal functor. Then, it induces a
functor Alg(¢®) — Alg(2“) and similarly for CAlg.

3.2 Spectra and Pr*

Roughly, a presentable co-category is one which is generated by a small amount of data.
Definition 3.11.

(i) An oo-category ¥ is presentable if it admits small colimits and is accessible. Being
accessible means that it is generated under «-filtered colimits by a small subcategory.

(ii) We denote by Pr- C Cat,, is the subcategory consisting of presentable co-categories and
left adjoint functors.

(iii) We write Prl; C Pr" for the full subcategory of stable presentable co-categories.
Exercise 3.12. If ¢ is presentable and €°P is presentable, then ¢ is a poset.

Proposition 3.13. There exists a symmetric monoidal structure on Pr* such that:

(i) The inclusion Pri® — (/Za\t:o is lax symmetric monoidal. In other words, there is a map
C XD — € Qp,L 7in Cate.

(ii) The functor ¢ x 2 — € ®p,. Z is initial amongst functors preserving colimits in both
variables.

(iii) There is an equivalence ¢ ®p . 2 ~ RFun(¢°P, 2).

(iv) The functor — ®p, — preserves colimits in both variables.

(v) The co-category PrL; has an induced symmetric monoidal structure.
Note moreover RFun(%¢°P, Z,) ~ RFun(%°P, 2)..

Fact 3.14.

5This means the edge is injective and the image is an interval.
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(i) S ePrt,
(i) € ® Sy >~ C,
(iii) € @ Sp ~ RFun(¥¢°P, Sp) ~ lim RFun(%¢*°P, S.) ~ lim €, ~ Sp(%).
From (iii) we get Sp ® Sp ~ Sp, which suggests that Sp € PrL, is the unit.

Theorem 3.15. There exists a unique symmetric monoidal structure on Sp such that the unit
is S and — ® — preserves colimits in both variables. Such symmetric monoidal structures are
called presentably symmetric monoidal.

Proof Idea. For uniqueness let E € Sp and write E ~ colim,, 2~ "X X,,. If F € Sp, then
E®F ~ colimX"¥TE, ® F ~ colim 2" colim X7 * ®F ~ colim X" colim F.
m m Xm m Xin

We got rid of ®, hence we get a uniqueness statement.

For existence, the Sp € Prk, being the unit implies Sp € CAlg(PrL). This can be used to prove
existence. H

3.3 Ring Spectra & Examples
Objects in CAlg(Sp®) resp. Alg(Sp®) are called E-rings resp. [E;-rings.

Example 3.16. Consider KU. We have to adjust the Vect which used direct sums to
Vect. € CAlg(CMon#P(S*))

by further adopting tensor products. This yields ku = B“\Teztép € CAlg(Sp®). Moreover,
O%ku ~ Z x BU and there is a map

&p
CP' ~ §* - Z x BU ~ (HBUm)
m

which corresponds to 1 — O(1). This is the Bott element B € mp(ku). Inverting this leads to KU.
It’s a non-trivial argument to see that this is still [E, and it was answered in B.6.

Example 3.17. Recall MU =~ colim <BU —~BO L Sp). Generalizing slightly yields the Thom

spectrum functor
S/pice = Sp, (F: X — PicE) — co}(imF.

This has a symmetric monoidal structure with respect to Day convolution on S, pi. g ~ PSh(Pic E)
which is informally given by

(X = PicE) @ (Y — PicE) ~ (X XY = PicE x PicE PicE> :
You can check that | is symmetric monoidal and so one can check that this gives a commutative

algebra object in S, pj g and by symmetric monoidality it sends to a commutative algebra object
MU € CAlg(Sp).

14
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3.4 Modules

Classically, for E € Alg(¢, ®) a module F over E additionally has the structure of a map
E ® F — F satisfying unitality and associativity.

Definition 3.18. Let A : A’ — €. A left A-module is a functor F : A°P x [1] — €’® such that
* The composite AP x [1] — Fin, has ([m],0) — (m + 1) and ([m], 1) — (m).
e The restriction A% x {1} — €% is A.
* The edges F(id[,,),0 — 1) and F(a°P,id) for convex a are coCartesian edges.

Here is some intuition. The underlying module is F([0],0) = M € ¥®. Using coCartesian lift
arguments, one can show that F([n],0) corresponds to (A,---,A, M) € %"l On the other
hand, F([n],1) corresponds to (A, --- ,A) € €". So given m : (2) — (1) we obtain a map

(A, M) = F([1],0) — F([0],0) = M

which by factoring over coCartesian lifts corresponds to amap A ® M — M.

4 Operads & Koszul Duality (Markus Zetto)

TALK 4
4.1 Operads via Symmetric Sequences 30.06.2025

Fix ¥ € CAlg(Prk), i.e. a (closed) symmetric monoidal presentable stable co-category. Consider
the chain of adjunctions

P colim Svym

. —QY . — y —
CAlg(Mody (Cat®lim)) <—— CAlg(Cat®™) =— CAlg(Cat) —— Cat

consisting of forgetful functors and the associated free functors. The composition of these left
adjoints is essentially

Cat — CAlg(Mod(Prl)), € — PSh(Sym %) ® ¥ ~ Fun (H(%hxzr:)"p, “I/) :
n>0
Definition 4.1. A /-enriched operad with space of colors X € S is a monad on
PSh(Sym X) ® ¥ € CAlg(Mod (Prh)).
Explicitly, it is an algebra in the co-category

End’®(PSh(Sym X) ® ¥) ~ Fun(X, PSh(Sym X) @ ¥)

~ Fun (X X L[X,f;,%)
n>0 "
= SSeqy (7).
of X-colored symmetric sequences in 7.

Definition 4.2. We write Op(7) = Alg(SSeqx (7)) and coOp(?) = coAlg(SSeqx(7)).

Soan ¢ € Op(7) specifies a functor Muly : X x [, X;z. — ¥ and the algebra structure on
0 encodes identities and compositions on Mul,.

15
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Example 4.3. Consider X = *. Then,
SSeq(?) = SSeq,(?) = Fun <L[ BY,, 7/) = Fun(BX, ¥).
n>0

So we get X,-action on &'(n) for all n € IN.

e Unit: Itis given by 1(n) = {® n# L
11/ n=1.
* Composition: (0 ® P)(n) =1, (O(r) ® Ww(n))hzn.
An algebra consists of 1y — (1) with

(@ ©0)n) =100 ® 6" M), — On)

>0
where the Day convolution monoidal structure formula amounts to 6%"(n) ~ colimy, +...4n,—n O(1;).
Example 4.4.
(i) The unit 1 is an operad. More generally, any category determines an operad,
(ii) Ewo(n) = 1y,
(ili) Ex(n) = Emb({1,---,n},RF) for ¥ = S.

(iv) Lie for ¥ = Vect (and chark = 0) freely generated by [—, —] € Lie(2) with respect to
relations, anti-symmetry and Jacobi. This doesn’t really make sense in S which is why we
want different enrichments.

Observation 4.5. If X € SSeq(?') is concentrated in degree 0, then so is & ©® X. Then,
SSeq(7) C ¥, or equivalently,

® : SSeq(?) — End(¥), X — (Symy : v — X © v[0])

Definition 4.6. We define Alg, (7)) = LModsym ¢(7') and coAlg}ﬂ’d'p(”I/) = coLModsym, 2(¥)
for 2 € coOp(?).0

Unravelled, an algebra is

(@ VINO) = [ (60 V"), — ¥,

r>0
so it makes sense that this is called algebra.

Remark 4.7. Actual coalgebras should have A — [,,(2(n) ® A®mYHEn

4.2 Bar-Cobar Duality

Definition 4.8. Let ¢ be a monoidal co-category ¢ and A € Alg™'8(%) = Alg(¥) 1,.. We call
Bar(A) € ¢ the bar construction of A if for every c € ¢ we have

Map, (Bar A, c) >~ Map , givod , ) (A £C)

where p : € ~ 1BiMod;(%) — s4BiMod 4(%) restricts scalars along the augmentation.

6Here, d.p. stands for divided powers.
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Proposition 4.9. If 4 admits geometric realizations, then Bar(A) exists and

Bar(A) =1®4 1 ~ colim(1® A®" ® 1)
[n]eA°P

Observation 4.10. Consider
1941 =Bar(A) > 10, A041 —>1®4(1®241) @41 = Bar(A) ® Bar(A),
so Bar(A) is a coalgebra with coaugmentation1 ~¥1® 1 — 1®4 1. We expect to lift
Bar : Alg®"8(%) — coAlg™é(%)

and if % has totalizations we also get Cobar : coAlg™"8(%) — Alg*"8(%) which should will be
a right adjoint.

Here is a proof idea.
Definition 4.11.
(i) A pairing of co-categories is a right fibration .# — ¢ x 2, i.e. a functor €°P x 2P — S.

(i) It is left representable if for every ¢ € ¢ the category .# x4 {c} has a final object,
equivalently there is a factorization D : ¥°P — 2 C PSh(2).

(iii) It is right representable if for every d € 2 the category .# X 4 {d} has a final object and
equivalently D’ : 2°P — ¥ C PSh(%).

If D is left and right representable, then (ID’)°P 4 ID.

Example 4.12. An exampleis A : Tw(%) — ¢°P x ¢ with straightening Map,, : € x €°P — S.
This is left and right representable, classifying the adjunction idy : € = ¢ : id¢.

Definition 4.13. A pairing of [E;-monoidal co-categories is an [Ey-monoidal functor .# — ¢ x 2
whose underlying functor is a right fibration.

Observe that
Alg]Ek(///) — AlgEk(%) X AlgEk(@)

is still a pairing.

Theorem 4.14 (Lurie). Let y : .# — ¢ x & be a pairing of E;-monoidal co-categories such
that . # x4 {15} ~ €, it is left representable and Z has totalizations. Then, Algg, (1) is a left
representable pairing.

Example 4.15. Recall the above example (4.12). Ssuppose that 14 is final and that ¢ has
totalizations. Then, AlgEk (A): AlgEk (Tw (%)) — Alg]Ek(%) X Alg]Ek(CKOP) is left representable.
So we obtain

Bar® : Algp ()P — Algy (¢°P).
If € has geometric realizations and totalizations and 14 is a zero object, then we get an adjunc-
tion”

Bar®
Algg (¢) — coAlgy, ()
Cobar®

Get rid of 14 = 0 and augmentations by replacing ¢’ with 47 ;.

7Strictly speaking, we used ID°P  (ID)°P.
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Example 4.16. Let ¥ = S*. In this case, coAlgg (S *) >~ S. We obtain
Bar® : Alg?Eig(S) — S Cobar®

which restricts to an equivalence Alg%pk (S) ~ 8=k,

Example 4.17 (Burklund®). Let & € AlgIEn(Prsﬁ) and &% = Fun(Z,&) € Alg]En(PrsLt). Let
é"fr C ﬁlc//rl be the full subcategory on those objects of the form (---,0,0,0,1¢, *, *, %, - - - ) where
1¢ lies in degree 0. Then,

Bar® - Alg]Ek(é"fr) R— coAlgIEk(éafr) : Cobar®

restricts to an equivalence.

The last example will feature in Jordan’s talk (Section 10).

5 Nilpotence & Periodicity (Henry Rice)

TALK 5

5.1 Self Maps 01.07.2025
A self-map in Sp is a map X — X. There’s a few ways you can consider nilpotence in Sp.

¢ Iterate the self map.

* For f : F = X consider its smash powers.

¢ Nilpotence in the ring 7, R.
There is a nilpotence theorem for each of these.
Theorem 5.1 (Nilpotence theorem). Let R be a ring spectrum.

(i) The kernel of the Hurewicz map meR — MU, R consists of nilpotent elements.

(ii) Consider f : F — X with a finite spectrum F. If MU ®f is nullhomotopic, then f is
smash-nilpotent.

(iii) Consider a sequence

x, 2

Xpi1 —— oo

with ¢,-connected X,, where ¢,, > mn + b for some fixed m,b € Z. If all
MU.(fn) : MUo(Xy) — MU (X;111)

are zero, then colim,, X,, ~ x.

Note that (iii) has the iterate nilpotence notion as a special case. Namely, take the sequence
induced by a self-map, then connectivity decreases linearly. If MU, of the self-map is trivial,
then the colimit of this iteration is trivial, in other words the infinite composite is trivial.

8This was also already in Hahn-Wilson and in earlier literature as a folklore thing.
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5.2 Morava K-Theory

For every prime p and every n € IN there is a ring spectrum K(n) called Morava K-theory
satisfying the following properties. Let v, be the coefficient of x*" of the p-series [p]yu of the
universal formal group law. Here, |v,| = 2(p" — 1).

Theorem 5.2. There is an isomorphism K(n), = le[vfl].

Essentially, take MUy,), invert v, and kill all the other generators. For example use an [EKMM97,
Theorem V.2.6] argument to see that K(n) is a ring spectrum.’

Lemma* 5.3. Let R € Alg(hSp) and x € R, with 7,.1(R/x) = 0 and 712,+1(R/x) = 0. Then,
R/x admits the structure of a homotopy R-ring spectrum with unit p : R — R/x.

Proof Idea*. This is [EKMM97, Theorem V.2.6]. The main idea is to consider the cofiber sequence

p®id

Y'R/x —— R/x R/x ®gr R/x —— X" IR /x

and diagram chase to construct a splitting of p ® id which is then the multiplication. This
diagram chase abuses another cofiber sequence coming from the cofiber of multiplication by x.
For more details see [EKMM?97]. O

Proposition 5.4. The ring K(n), is a graded field, i.e. all modules over K(n), are free.
Corollary 5.5. There is a Kiinneth formula K(1)¢(X ® Y) = K(n)e X ® K(n)oY.
In particular, K(n) ® X splits as a direct sum of shifts of K(n)’s.

5.3 Back to Nilpotence

Here is the detecting nilpotence lemma.
Lemma 5.6.

(i) Let R be a p-local ring spectrum, & € 7.R, then « is nilpotent if and only if K(n).« is
nilpotent for all n.

(ii) Let F be a finite p-local spectrum. Then, f : ©XF — F is nilpotent if and only if K(n) f is
nilpotent for all n.

(iii) Let F be a finite spectrum. Then, f : F — X is smash nilpotent if and only if K(n).f is
nilpotent for all n.

5.4 Periodicity Theorem

This is a consequence of the thick subcategory theorem.

Definition 5.7. Let X be a p-local finite spectrum. Then, X has type 7 if it is the least integer
such that K(n)e X # 0.

Proposition 5.8. Suppose that K(11)eX = 0. Then, K(n — 1)¢ X = 0.

If X has type 1, then one may ask whether X has a v;-self map.

Definition 5.9. An v,-self map is a map f : X — X such that K(n). f is an isomorphism and
K(m). f is nilpotent for m # n.

Note that in the case type X > 7, one can take 0 : X — X as a v,-self map. For example,
the periodicity theorem shows the existence of v,-self maps in other cases. A thick subcategory
theorem argument shows that the category of type > n spectra are those admitting a v,-self
map.

9See also [Lurl0, Lemma 22.2].
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5.5 Thick Subcategory Theorem

Definition 5.10. Let I' < Z[t] be a subgroup of the form x + byx? + byx® + - - - which is a group
under composition.

Consider F(x,y) € FGL(R) and g(t) be a strict automorphism. Then, gF (g 'x, g7 y) is again a
formal group law, so by the Yoneda Lemma one obtains a self map L — L. This means that I'
actson L.

Observation 5.11. Let X be a finite spectrum, then MU, X also has an I'-action via y(ax) =
Y(@)y(x) for ¥y € I,a € MU,, x € MU, X.

Definition 5.12. Let CT denote the category of finitely presented L-modules equipped with an
I'-action compatible with its action on L.

This is equivalently also the category Comodmy, Mmu =~ QCoh(Mi@g). The category Modyy,
is abelian, so CT is a subcategory of an abelian category and you can consider short exact
sequences

0 A B C 0.

A subcategory of CT is thick if B € ¢ if and only if A,C € €.

More modernly, a thick subcategory of a stable co-category is one that is closed under cofibers
and direct summands.

Theorem 5.13. The only thick subcategories of CT'(, are CT'(,) and those subcategories consisting
of M such that v;}lM = 0, also called 6.

Theorem 5.14 (Thick subcategory theorem). The thick subcategories of Sp‘(*;) consists of Sp?‘;)
and the type > n spectra for n € IN U {oo}, i.e. those X with K(11)eX = 0.

6 Examples of Spectra in Chromatic Homotopy Theory (Catherine
Li)

In this talk, Catherine was wearing a t-shirt with Akhil’s face along with a a number of fun
math jokes. She wished Akhil’s spirit to carry this talk.

Goal: Introduce E,, (Morava E-theory) and BP (Brown-Peterson spectrum). Moreover, construct
multiplicative structures:

e [E-structure on E,;,
e [E,-structure on BP,

e [E;-structure on K(n).

6.1 Morava E-Theory

Motivation: The moduli stack ./\/lf:g” of formal groups of height exactly n has a unique geometric
point, i.e. over the algebraically closed field there is one formal group of height n (up to
isomorphism). This leads to K(n).

The inclusion of the geometric point is not flat! So instead we want to consider a formal
neighbourhood of this point which will become a Landweber exact thing. Conceptually, it is

also important to study. We want to understand M, by seeing how to glue the strata together.

Here is a picture of Mgz X SpecZ,):
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Figure 2: An imprecise picture of a stratification on Mg, X Spec Zy).

A deformation of the geometric points should be Morava E-theory.

Definition 6.1. An infinitesimal thickening of k is a ring A with p : A — k withm = kerp
such that:

(i) m! =0fori >0,
(ii) m’/m/*1is a finite-dimensional k-vector space for all i.
Example 6.2. An example is A = k[e]/(¢?).

Definition 6.3. Let Gy — Speck be a formal group of height n. A deformation of Gy to Aisa
formal group G — Spec A such that G Xspec 4 Spec Ag > Go.

In coordinates, say that Fy € k[x, y] corresponds to some formal group law Gy and F corresponds
to some G, then this means Fy = F (mod m).

Example 6.4. Consider a formal group law F over A = k[¢]/(e?) and suppose that
[p]F:gxp+xp2+... .

Let Fy be the reduction of F modulo (¢), so [p]r, = X , 50 we obtain a formal group law of
height exactly 2. Here, F is a deformation of F to A.

Notation 6.5. Let Defg (A) = {deformations of Gy to A together with isomorphisms}.

Theorem 6.6. Let k be a perfect field of characteristic p and Gy — Speck be a formal group of
height n < co. Then, there exists a formal group G — Spf Ey where Eg = W(k)[u1,- -+, up—1]
such that this formal group is the universal deformation of Gy, i.e. it induces an equality
Spf(Ep)(A) = Defg(A) for all infinitesimal thickenings A of k.

In coordinates say Fy «~ Gp. Then, F is the universal deformation of F; if v;(F) = u; and F
reduces to Fy under Ey — k. So it will look like

[plr = px + ugx? + - + unflxpnfl + (something like [p]po) .

Construction 6.7. Fix k and G. By Landweber exactness there is an even periodic, homotopy
commutative, homotopy associative spectrum E = E(k,G) = E, whose homology theory is
given by E, = MU, @y, Eo[u*] with |u| = 2.

I'm grateful to Catherine for (re-)explaining the following to me!
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Observation 6.8. In general, the only obstructions to a homotopy commutative (and associative)
spectrum obtained from a commutative (co-)homology theory by Brown representability is
through phantom maps.

¢ Hopkins: Landweber exact spectra are evenly generated [HS99, Proposition 2.12] [Lur10,
Proposition 17.9].

¢ Tensor products of evenly generated spectra are evenly generated [HS99, Proposition
2.19].

¢ Strickland: Phantom maps from evenly generated spectra to even spectra are nullhomo-
topic [HS99, Corollary 2.15] [Lur10, Proposition 17.10].

So altogether, there are no non-trivial phantom maps E ® E — E. Thus, we can compare the
maps 4 : EQE — Eand pyo7: E® E — E where 7 is the swap map. On homology theories
these agree since E, is homotopy commutative, so  — u o T is a phantom map which means that
it’s nullhomotopic! Combining these yields that E, is a homotopy commutative MU-algebra, as
also explained with more detail in [HS99, Proposition 2.21].1°

Here is a summary of the above:

Theorem* 6.9. Let E, be a Landweber exact commutative MU,-algebra. Then, the Landweber
exactness functor yields a homotopy commutative MU-algebra.

Proof. See [HHS99, Theorem 2.8]. O

6.2 Separability and E..-Structure

Let’s construct an Ee-structure of E,,. There is an unpublished argument from Ishan, Robert
and Dustin as well (D.6). Instead, we will follow Maxime’s PhD thesis.

The idea is that separable algebras are nice in the homotopy things lift to co-categorical things.
Here is one slogan that you could be expecting:

Example 6.10. Say A is separable in Alg(%¢’) where ¢ is something appropriate. If A is homotopy
commutative, then it extends to an [E..-structure.

Problem: E,, is only homotopy ind-separable.

Let (¢, ®,1) be a symmetric monoidal co-category.

Definition 6.11. An algebra A € Alg(%) is called separable if the multiplication map
ARA®P - A
admits a section s (as a map of A ® A°P-left modules).

Definition 6.12. Let ¢ be a compactly generated presentably symmetric monoidal stable co-
category. Then, A € CAlg(¥) is ind-separable if there is a subset S C 7o map(ll, A ® A) such
thatu: A® A — Arealizes A ~ (A ® A)[S!].

Here is the motivating example:

Example 6.13. Let R — A be a G-Galois extension for a finite group G. Then, R — A is
separable and E, is a (pro-)Galois extension of LS.

Theorem 6.14 (Ramzi). Let ¢ satisfy the following assumptions:

105ee also https://mathoverflow.net/questions/387107.
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(i) Itis a compactly generated, stable, symmetric monoidal co-category in which ® commute
with colimits in each variable and ¢ is closed under non-empty'! tensor products.

(ii) Let X,Y € ¢ such that there exists an isomorphism f : 77, Map..(—, X) — e Map,(—, Y)

of cohomology theories on ¢'“, then there exists f : X — Y inducing f (which is an equiv-
alence).

Let A € CAlg(h?) be homotopy commutative and homotopy ind-separable in ¢ which receives
no phantom maps from any ®-powers of A. Then, for every 1 < d < co the moduli space

Algg (€)™ X argme) {A}
is contractible, i.e. there exists a unique lift of A to an [E;-algebra.
Here is the theme:

Observation 6.15. One can view separability as close to projectivity. So if A is separable, it is
projective an an A ® A°’-module. Any A-module looks like a retract of A ® M for some M.
This turns a lot of the mapping spaces discrete (or at least simply connected). This is an analogy
to Extasa0r (A, A).

Why does Spy,, satisfy the assumptions from Maxime’s theorem (6.14)?
(i) Itis compactly generated by Lk, X for dualizable compact X.
(ii) It ends up to suffice showing that h(4'“) is countable.
Why does E, satisfy the hypotheses?
¢ To see that E, is homotopy ind-separable, one computes
Tte(Lxn)E ® E) = C(I', E,)
where I' is the Morava-stablizer group. Consider

evy 1 Te(Lga)E ® E) = E¢ 2 C(T, EJ)[S 1.

* Lack of phantom maps E“" — E: Do things like earlier.

This concludes the proof that E, has a unique [E;-structure for 1 < d < oo.

6.3 Brown-Peterson Spectra
Recall that 77e(MU(,)) = Z[v; : lv;| = 2p' — 2] ® Z )by = m # pk —1].
Definition 6.16. The Brown-Peterson spectrum is BP = MUy, /(by, : m # pk—1).
One obtains MU, ~ @>" BP.
Fact 6.17 (Quillen). There is an idempotent ¢ : MU,y — MU, such that

BP ~ colim (MU, < MUy, < -+ ).
The idempotent is also called Quillen idempotent.

It turns out that BP is Landweber exact, so it is homotopy associative. Now about the Ej-
structure.

1156 1 doesn’t need to be included.
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Theorem 6.18 (Chadwick-Mandell). Quillen idempotents and MU — BP admit the structure of
[E>-ring spectrum maps.

Proof. If R has an [Ey-orientation, then the idea is that we consider

Some calculations using B> BU ~ BSU show that
Map(B? BU, B> GL1 R) — Map g145)(MU(1), R)
is surjective on 71 in the case of MU. So this recovers an [E;-lift of the Quillen idempotent. [

This shows that the Quillen idempotent is an [E;-map and that MU — BP is also [E,. Here we
are using that idyy is an [E;-orientation on MU.

6.4 Morava K-Theory

We will now construct an [E;-ring structure on K(n) improving that homotopy associative
structure stated in the previous talk (5).

Theorem 6.19 (Angeltveit). Let R be an even E-ring and I be an ideal generated by a regular
sequence. Then, A = R/I being homotopy associative implies that it extends to an [E;-structure
on A.

Proof Idea. It’s an obstruction theory argument where the obstructions live in Extag 00 which
are then shown to vanish by a spectral sequence argument. Hahn-Wilson extend this to R being
[E>-among other things. O

Apply this to MU and take I = (p,v1, -+ ,0p_1,0ns1, -+ ,bm : m # p* —1). This yields an [E;-
structure on k(). Moreover, we have v}, 'k(n) ~ K(n) and argument that this doesn’t break the
[Eq-structure is for example in the appendix of [MNN17]. A different way is to try to understand
the categories of modules (B.6). Some more discussion arose at the end of the talk.

¢ There is another paper by Angeltveit on the uniqueness of [E;-structures on K(n) but Ishan
says that this is wrong. There are many homotopy associative structures on K(n) [Lur10,
Remark 22.3] but fixing one allows us to uniquely extend to an [E;-structure. The above
Angeltveit is correct, however.

* Gijs said that K(1) can never be [E;. This uses a Hopkins-Mahowald type result that the
free [E>-algebra with p = 0is IF, [ACB19, Corollary 5.4]. Sil also explained a k-invariant
argument to me using Hopkins-Mahowald, but I cannot quite remember how it goes.

7 Descent, Smash Product Theorem & Chromatic Convergence (Maite
Carli)
The goal in this talk is to discuss the following theorem.

Theorem 7.1 (Hopkins-Ravenel, Smash Product Theorem). The localization Lg, = L, is smash-
ing, i.e.
L,X~X®L,S

for X € Sp.
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Indeed, thereisamap X ® 7 : X —+ X ® L,S which is an E,-equivalence since
XQE, ~X®S5®E, ~X®L,S®E,

via 7. Thus, mapsp(X ® L,S, L, X) — mapsp(X, L, X) is an equivalence because L,E is E,-local.
This yields a preferred map X ® L,S — L, X which is an E,-equivalence. If we can show that
X ® L,S is Ey-local, then the theorem (7.1) follows. So our plan will be the following:

(i) Introduce descent and nilpotence.
(ii) Proof of Smash Product Theorem from: it.

(iii) Proof of Chromatic Convergence.

7.1 Setup of Descendability

Definition 7.2. A subcategory of a stable co-category ¢ is thick if it is closed under fibers,
cofibers, contains 0 and is idempotent complete.

Let ¢ be a symmetric monoidal stable idempotent-complete co-category and A € Alg(%).
Definition 7.3. An object X € ¢ is A-nilpotent if X € Nil4 = Thick®(A).

Example 7.4. Let ¢ = D(Z) and A = Z/pZ. Then, X € Nily if and only if there exists n > 0
such that p" : X — X is nullhomotopic.

Question: How do we approximate X € € by elements in Nil4?

Definition 7.5. The augmented cobar construction CB*"8(A) is the augmented cosimplicial
diagram

—

1 —5 AT AQAST— ...
H %
-—

The cobar construction is CB*(A) = CB™&(A)|,.

Remark 7.6. The augmented cobar construction CB*'8(A) admits an extra degeneracy after
tensoring with A, i.e. for all F : ¥ — 2 there is an equivalence FA = Tot(F(CB™8(A) @ A)).

Proposition 7.7. Let X € Nil4. Then for every stable co-category & and exact F : € — 2 the
map
FX > Tot(FX®A) I FXRARA) F---)

is an equivalence.

Proof. The class for which this equivalence holds is thick, and if X = A ® Y we are in the setting
of the previous remark (7.6). O

Definition 7.8. A tower in ¥ is a functor IN°P — ¢". Towers form a stable co-category Tow(%).
Construction 7.9. Consider X® : A — &, then one obtains a tower
- — Tot<,(X*) —— Tot<,1(X*) —— ---
where Tot<,(X*®) = lima_, X*.
Fact 7.10. There is an equivalence Fun(A, €) ~ Tow(%).

Definition 7.11. Let {X;};> be a tower.
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(i) The tower is nilpotent if there exists N > 0 such that for every i > 0 the map X;; n — X
is nullhomotopic.

(ii) The tower is quickly converging if it is in the thick subcategory generated by constant
and nilpotent towers.

(iii) The corresponding X*® € Fun(A, %) is quickly converging if the associated tower is.
Proposition 7.12. Suppose that X* € Fun(A, %) is quickly converging. Then,
(i) Forevery F : ¢ — 2 and stable Z we get that F(X*) is quickly converging.
(ii) Let Z be a stable, idempotent-complete and F be exact. Then, F(Tot(X*®)) ~ Tot(F(X*)).
(iii) We have Tot(X*®) € Thick(X! : i € N) and lim(Tot<; X®) is a retract of some Tot; X°.

Remark* 7.13. From Akhil’s survey [Mat18, p. 6]: An upshot of quick convergence is that it
indicates that infinite limits in a stable co-category behave like finite ones (up to taking retracts).
For example, exact functors preserve finite limits and not totalizations in general but they do
preserve quickly converging ones by the previous proposition (7.14).

Proposition 7.14. We have X € Nily, if and only if CB*(A) ® X is quickly converging with limit
X.

Proof. Here are two facts:

e for X € Thick®(A) there exists k > 0 such that I*” — 1 is null after — ® X where
I =1 — Ais afiber sequence,

e there is a cofiber sequence (X ® I¥"),,>9 — const(X) — Tot<,(CB*(A) ® X).
With those we can proceed with the proof.

= : For X € Nil, = Thick®(A) we get some N such that (I®N — 1) ® X ~ 0, s0 (X ® [®")s,
is A-nilpotent and we use the last fact.

<= : We have X = Tot(CB*(A) ® X) € Thick(A ® X, A® A® X, ---) C Thick®(A).

Definition 7.15. If 1 € Nily, i.e. € = Thick®(A), then A is called descendable.

We will see that E,, is descendable in the L,-local category.

Let E be an [E;-ring spectrum.
Proposition 7.16. Suppose that CB*(E) is quickly converging.
(i) There is an equivalence Tot(CB®*(E)) ~ LS.
(ii) The E-local sphere LS is E-nilpotent.
(iii) The localization Lg : Sp — Sp is smashing.
Proof.

(i) By quick convergence, E ® Tot(CB*(E)) ~ Tot(CB*(E) ® E) ~ E, so LgS — Tot(CB*(E)) is
an E-equivalence and both sides are E-local (the right side is a limit of E-local objects).

(ii) This is the previous proposition (7.14).
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(iii) It suffices to show that for all X € Sp the spectrum LgS ® X is E-local by the observation
at the beginning of the talk, but LS € Thick®(E) by (i), so X ® LgS € Thick®(E). This
finishes the proof: one can check by hand that the E-local spectra form a thick subcategory
of Sp. As LgSp is compactly generated by the unit LgS, we deduce by another thick
subcategory argument that LgSp is actually a thick tensor ideal. Since E is E-local, we
conclude Thick®(E) C LgSp.

O]

7.2 Proofs of Big Theorems
So to prove the smash product theorem it suffices to show that CB*(E,) is quickly converging!
Theorem 7.17. The cobar construction CB®(E,) is quickly converging.

Construction 7.18. We can associate the Bousfield-Kan spectral sequence to the tower associ-
ated to CB*(A) ® X with signature

Ey' = H*(7(CB*(A) ® X)) = 71,5 Tot(CB*(A) ® X),
also called A-based Adams spectral sequence.

Proposition 7.19. If CB*(A) is quickly converging, the associated Bousfield-Kan spectral se-
quence admits a horizontal vanishing line, i.e. there exists N > 2 and k > 0 such that E;’f = 0 for
all s > k.

Theorem 7.20. Let X* be a cosimplicial spectrum. If there exists s > 1 such that for every finite
spectrum F the Bousfield-Kan spectral sequence associated to X* ® F vanishes at E{ for all
p > s, then X* is quickly converging.

Proof of 7.17. Observe that CB*(E,) is quickly converging if and only if CB*(E,) ® S is if and
only if there exists a finite type 0 spectrum X such that CB*(E,) ® X is.

We then construct X such that the Bousfield-Kan spectral sequence associated to CB*(E,) ® X
has a horizontal vanishing line on the E>-page. It is given by the cohomology groups of the
chain complex

(En)eX —— (En ®Ep)eX —— (B, ®E; ®Ep)eX —— - --
Recall that ((Ey)e, (En)e En)-comodules correspond to QCoh(Mng”), we the Ep-page will be the
cohomology H* (Mé", Fy: X). Thus, we inductively reduce to showing
k _
H <Mfg,F|M§g ® G) =0
fors>0and G € QCoh(M’f‘g). We thus pullback

BGy x Spec(FP) R /\/llf‘g
| |
SpecF, —— SpecF,

so H ’(M’f‘g, F®0) ®F, Fp = H*(Gyg, V) where V is some Fp—vector space with a continuous
Gy-action.

If p > n+1then X = §,) because H*(Gy, V) has finite cohomological dimension. Else there is
more work. More details are also in Lurie’s chromatic lecture notes [Lur10]. O
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I'm grateful to Maite for explaining a part of the following proof again to me!
Theorem 7.21 (Chromatic Convergence). Let X be a finite p-local spectrum. Then,
X ~lim(--- = L X — L1 X — LoX).

Proof. The conclusion of the theorem forms a thick subcategory, so it suffices to show this for 5,

by the thick subcategory theorem. We have an Adams-Novikov filtration S(,) ~ Tot(MU? ).

(»)
Here are two claims:

(i) Chromatic convergence holds for free MU(,)-modules.
(ii) The cobar construction CB*(L, MUj;)) is quickly convergent with limit L,S.
For the proof:

(ii) As E, is complex oriented we have a ring map L, MU — E,, so E, is an L, MU-module.

Thus, E, € Thick®(L, MU) and so L,S € Thick®(L, MU) using L,S € Thick®(E,) as in
the proof of 7.14. So we proved (ii) by 7.14.

By (ii) we obtain L,S ~ Tot(CB*(L, MU)) ~ Tot(L, CB*(MU)). By using the Adams-Novikov
filtration as well, we then obtain

Sy =~ Tot (liign L, CB'(MU(p))) ~ lim Tot(L, CB*(MU)) ~ lim L, .

Remark* 7.22. By combining (ii) above with 7.16 we obtain
L,S ~ Tot(CB*(L, MU)) >~ Ly, MuS

which I see as a (potentially obvious?) curiosity.

8 Features and Bugs of Monochromatic Homotopy Theory (Florian
Riedel)

Recall that our goal in life is to understand S.

8.1 Recap

We might use S — MU which detects nilpotence by the nilpotence theorem.

Observation 8.1 (Nishida). The kernel of the Hurewicz map 7.5 — e MU = Z ;) [t0, t1, - - ]
consists of nilpotent elements by the nilpotence theorem. By Serre’s finiteness theorem, 77,5 for
e > () consists of nilpotent elements. This recovers Nishida's nilpotence theorem (which he proved
differently).

We should “interpolate’ between Sp and (MU, — MU, MU = - - - ) which is close to M. The
moduli stack of formal groups My, comes with a stratification by height

MG C ME" C M.
Recall also vg = p and v; = t5i_; in 71 MU which control the height.
Recall: K(n) = MU /(to, t1, - - - )[v, '] and 7eK(n) = Fp[v;5] and K(0) = Q. Consider localizations
Lk : Sp = SPk(n and Ly = Lxo)s.-ekn) = L, : Sp — Spg, -

There is a more geometric setup, namely Sp K(n) C SpT(n) and these are the monochromatic
categories.

Gijs said that historically, Spy,, was called monochromatic, Spy,, was first called monocular
by Ravenel but was told by Miller not to do this.
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Construction 8.2. Let V be a type n complex, i.e. for V € §“ we have K(m),V = 0form < n
and K(n)eV # 0. There exists a v,-self map v : X'V — V which is an K(n).-equivalence
and this always exists by the periodicity theorem. Then, T(1n) = Z®°V[v!] or for example

S/(p™, v'lnl, cee, v;njl )Mo, 1. Only its Bousfield class is well-defined! But in that regard we can

form the localization

Ly

)
Sp — SpT(n)

o |

SPkm)
The goal of this talk is to learn something about Spy,.

8.2 Bousfield-Kuhn Functor

These monochromatic categories behave quite weirdly in some regards.
Theorem 8.3 (Bousfield-Kuhn). There exists a factorization

Ly

Sp
(& %
Ss

This @ is the Bousfield-Kuhn functor.

SPT(n)

Someone asked whether there is a similar story for K(1) and indeed: further K(r)-localize.

Remark 8.4. Consider A € S, and suppose that QOfA ~ A. Then, A deloops to a spectrum
{Ai}icz given by
A =AM =T A = QA A=A,

Definition 8.5. Let (V,v) be a type n space with v : 'V — V. The Bousfield-Kuhn functor
associated to (V,v) is

®y(A) = colim (Map*(V, A) 2 Map, (Z'V, A) & - ) .

Can check that Q'@ (A) ~ Py (A), so Py(A) deloops to a spectrum by the previous remark
(8.4).

Lemma 8.6. For every X € Sp we have ®y(Q)*X) ~ LT(H)XV ~ Ly X @ D(EFV).
Proof. Let A € S,. Then, ®y(A) is T(n)-local. Indeed, for W € S, then
Oy (AW ~ colim (Map*(V,A)W D )
~ colim (Map*(V AW, A) Wh, .. )
=~ Oy aw(A).

Use that self-maps are nilpotent on complexes of the wrong type. I don't get what

and why we are

So with some work, the above implies @y (Q)*° X) ~ &y (O Ly, X). Suppose that X is T(n)-local. st doher
Then,

Dy (Q*X) ~ colim (Map, (V,0%X) % - )
~ colim (MapSP(Z‘”V, X) > Mapsp(zoothV’ X)L )
Note that the fiber of say the first stage is Mapg,(X*V /v, X) =~ 0 which uses that X is T(n)-local
and Z°V /v is type n + 1. So @1 (Q°X) ~ X". O
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Contemplate the functoriality of (V,v) — ®y to get a refinement

Spfzir;’op —— Fun(S,, Sp)

[ Ap()

fin,op

Sp
Definition 8.7. We define the Bousfield-Kuhn functor as ® = Rang_)(5).

Proof of 8.3. Compute

POQ7X) >~ lim  Pp(QVX) ~ %12}5 Ly XE ~ Ly X

Sp2,2E—S

with which we are done. The second equivalence uses the previous Lemma (8.6). O

8.3 Consequences: Higher Semiadditivity
We will talk about higher semiadditivity and the relevance to those monochromatic categories.
Definition 8.8. Let A € S. We call it m-finite with m > -2 if:
(i m=—-2:if A =%,
() m=-1:if A e {x,Q},
(iii) m > 0: if 71; A is finite for all i and ;A = 0 for all i > m.
Example 8.9. Let G be a finite group. Then, BG is 1-finite.

Definition 8.10. Let ¢ be a presentable co-category. We call ¢’ m-semiadditive if it is (m — 1)-
semiadditive and have natural (specified) equivalence

Nm, : colim X — lim X
A A

for every X € Fun(A, ¥) and m-semiadditive A.

We define it inductively since all arguments in this game are usually done inductively anyway
and one needs the induction hypothesis to define the norm map. On the other hand, Ishan said
that one could also have just stated that there exists an equivalence because if an equivalence
exists here, then it is already the preferred equivalence.

Remark 8.11.
(i) Any ¢ € Pr! is (—2)-semiadditive.
(ii) If € € Pr* is (m — 1)-semiadditive, there is a preferred map
Nmyg : co}qimX — lilan
for all A € S™fin In particular, m-semiadditivity is a property of .
(iii) For m = —1 the condition is
co(lng ~ Dy — kg ling,

i.e. ¢ being pointed.
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(iv) For m = 0 consider A € S*fi" ~ Fin. Consider X € ¥ given as {X,},ca, then the
semiadditivity condition is

Nmy : collqunX ~[Xe — [ Xe > EergXa.
acA acA

This map is essentially
id
e JI Map(X,, X;) >~ Map (]_[ Xa,]‘[xa> .
id (ab)cAx A A A
More specifically, Nmfﬁ’b) isid : X; — X, fora = b and itis

Xa — *g ’;J@(g E— Xb

0
We do this all very explicitly here to generalize.
(v) Consider m =1and A = BG. Let X € €5C, then informally

Nmpg : Xy — XhG, [x] — Z gx.
8€G

This morally says that group cohomology agrees with group homology in such cate-
0g 12
gories.

(vi) Check that ¢’ = Sp, is 1-semiadditive. This follows from a derived Maschke’s lemma.
On the other hand, Modg, or Sp is not 1-semiadditive. This already fails for C,. Florian
said that this is a good exercise to try.

(vii) The co-category Pr’ is co-semiadditive.

Theorem 8.12 (Hopkins-Lurie, Carmeli-Schlank-Yanovski). The co-categories Spy,, and Spy,
are co-semiadditive.

Alot of this reduces to the case B"C, and then you input some Morava K-theory computation
of these spaces. The 1-semiadditivity case has a fun proof using the Bousfield-Kuhn functor.
Very roughly, one uses that Q®*!Z*BG — (1S has a retract.

This says that the representation theory is a bit degenerate; cohomology agrees with homology.

9 Definition and Examples of Power Operations (Azélie Picot)

TALK 9
9.1 Intro 02.07.2025

Let E € Algg (Sp), then 71, E should inherit some algebraic structure from the IE-structure.
Those will be power operations.

Application 9.1. These operations are obstructions to the existence of certain multiplicative
structure.

Example 9.2.

(i) Consider S N /2, then a power operation argument shows that $/2 is not an
[Eq-ring spectrum.

(ii) With power operations one can show that K(7) is not Ec.

12In the case ¥ = Sp one could take X = HM where M is a G-representation.
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9.2 First Examples of Operations
Setup

The setup is an operad 0, e.g. 0 = E, or 0 = E«. Let E € Algg (Sp), e.g. E=Sor E = HF).
We work in Alg,(Modg). Consider the following free-forgetful adjunctions:

Sym ;(—) E®—
Sp —— Alg,(Sp) —— Alg,(Modg)

So the top composite is E ® Sym ,(—). Note here that Mod[ is symmetric monoidal if E is Ec.
Moreover, recall that there is an explicit formula

Sym,(X) ~ P (220 (k) & x@k)hzk = D symP(x)
k>0 k>0

for the free object.

Action of ¢ on Homology

We will see our first operations here, most prominently the Browder bracket which in some sense
will obstruct the existence of higher commutative structure.

Proposition 9.3. Let E be an E-ring spectrum and & be an operad.
(i) Then, E,0 is an operad in ModE, .
(ii) For X € Alg,;(Modg), then E,& acts on E, X, i.e. E, X is an E,0-algebra.
Example 9.4. Let & = E, forn > 1 and E = S. Recall E,(2) = Conf(R") ~ sn-l,
(i) Let X € Algg (Sp). Then, moE, acts on 774 X. In particular,

T E Assoc n=1,
0 Comm n>2.

This implies that 77, X is an associative resp. commutative algebra.

(i) Browder bracket: Let A € m, 15" ! = m1,_1 Confo(R") be a generator. Suppose that
a1 € 11,4, (X) and ap € 714, (X) are represented by maps 5% — X. Consider

gDt ~ gl 5 8m 382 5 F¥E,(2) @ X ® X — X.
This is denoted by [&1, a2] € 7,4, 4 (1—1)44,(X) is called the Browder bracket of x; and a>.

Proposition 9.5. For every [E,-algebra X this generator A € 7, 1(IE;(2)) defines a bilinear
bracket
[_I _] : nﬂl(X) ® nﬂz(X) — 7-[(11+(71—1)+IZ2(X)'

It satisfies the following properties:
(i) Symmetry: [a, f] = (=1)xtn=DUFF=D[B, 4],
(ii) Leibniz: [a, By] = [a, Bly + (—1)Fllel+n=Ng[g ],
(iii) Jacobi: 0 = (=1)’[a, [B, 711 + (=1)’[B, [, &1l + (=1)"[7, [«, B]].
Remark 9.6. For n = 1 we have [«, 8] = a — (—1)1*/FlBa.
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9.3 Power Operations
Let’s finally define operations.
Definition 9.7.

(i) Let m,n > 0. Then, a homotopy operation in Alg,(Modg) is a natural transformation
Tty = TTy.

(i) It induces a homology operation E,, = E,. Denote by Op% (m,n) the group of these
operations.

(iii) There is a variation of natural transformations Hi-‘zl Ty, = 71, which leads to the multiary

version Op5 (my, - -, my, n).

Classification
Proposition 9.8. In hAlg,(Modg) we have natural isomorphisms

7m(A) = [E @ Frees(S™), Alalg ,(Mod)-
Proof. This follows from the free-forgetful adjunction. O
In particular, 77, is corepresentable, so we can apply the Yoneda Lemma to compute OpZ (m, n).
Corollary 9.9. There is an isomorphism Opg(m, n) = 1,(E ® Frees(5™)) and

OpL(my, -+ ,my,n) = 71, (E @ Frees(S™ @ - - - & ™).

Proof. This follows from the Yoneda Lemma. O

Example 9.10. Browder brackets come from a class [11, 12] € Op%n(p, gpr+m—-1)+q).

Power Operations

Definition 9.11. The group of power operations of weight k on degree m in Alg,(Modg) is

Powl,(m, k) = €D 7wr (E @ (ET00) @ (S") Yz, ) = € 7msr (E ® Sym$y(S™))
reZ reZ

In practice, Q : """ - E® Symg)(Sm). Take an 0-algebra A and x : 5" — E ® A. Then,
Q) 9™ — 2, Egsym®@©m X4 Eg A

where X corresponds to x by adjunction.

9.4 Examples
Dyer-Lashof Operations
Let & = [E, and E = HIF,. These are also called Araki-Kudo operations for p = 2.

Theorem 9.12. The [E,-algebras in Mod g, have Dyer-Lashof operations Q; : 71, = 72,4 for
0 <i < n—1such that:

(i) Additivity: Q,(x +vy) = Q,(x) + Qr(y) forr <n —1,

(ii) Square: Qo(x) = x2,
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(iii) Unit: Q;(1) = 0 for j > 0.

(iv) Cartan Formula: Q,(xy) = Y., ;- Qp(x)Qq(y) forr <n—1.

(v) Adem relations: Q,Qs(x) = }; (gj__sr__ls) Qr425—2jQj(x) for r > 0.

(vi) Stability: cQo =0, cQ, = Q,—1 forr > 0,
(vii) Extension: Q,-operations for [E,-algebras coincide with the ones for an extension to [E,, .
(viii) Compatibility with the Browder bracket [—, —]: We have

* [x,Qy]=0forr<n-—1,

Qu-1(x +y) = Qn-1(x) + Qu—1(y) + [x,y],
Qn-1(xy) = X Qp(x)Qq(y) + x[x, yly,

[x, Qu-ayl = [y, [y, xI],

Can extend an [E,-algebra to an [E,, ;-algebra if bracket is 0.

Azélie: I know these are a lot!
Remark 9.13.
(i) Dyer-Lashof operations live in weight 2.

(ii) Be careful with indexing in the literature: Q; vs. Q.

K(1)-Local Power Operations
We work in Algg_(Spg))-

Theorem 9.14 (McClure). There is an isomorphism 71 FreeISEZK“)({x}) = (Free(g({x}))g.13
This will be discussed in Preston’s talk (15).

Definition 9.15 (Joyal). A J-ring is a ring R together with a unary operation 6 : R — R such
that the Witt formulas

r—14q S
O(xy) = P3(y) +y"3() + po()oy) and ox+y) = () +ow) — ), (’; > x'yr™
i=1
and 6(0) = 1 are satisfied.
This is equivalent to admitting a lift of the Frobenius:

R—" 4R

L

R/PT)HR/P

We can put ¢(x) = x? 4 pé(x), and the -ring structure gives that ¢ is a ring homomorphism.

34



Qi Zhu European Talbot 2025

10 Computing the Dyer-Lashof Algebra (Jordan Levin)

TALK 10
Everytime the words Dyer-Lashof algebra falls, people reference the same book over and over 02.07.2025

again which is arguably difficult to understand. We present an argument communicated by

Ishan. We want to compute the homotopy groups (rings) of Freeii (Z'IF2). Let’s make some
assumptions. We put p = 2 (and p > 2 is slightly harder).

10.1 Setup
Claim 10.1. We can use pure algebra to get these rings.
How?
¢ Koszul duality: Consider the equivalence
Bar : Alngrl’aUg (Mod]%rz) = coAlngI;’maUg (Alg]EH(Mod%rz)) : Cobar.
Here, cn means connected, i.e. non-positively graded. (This includes the unit.)

* Spectral sequence arguments.

Fact 10.2. Let M(n) be the [Fp-module M in degree n. There is an equivalence
Bar Freef, (M(n)) ~ Freeg, ,(XM(n))
underlying (there is also some [E;-coalgebra data).

Strategy: Suppose we knew Freeg, (XIF»(1)) with coalgebra structure. Then,
Cobar Freeg, (XIF»(1)) ~ Freeg, , (IF2(1)).
Goal: Explain the passage from Freeg, (—) to Freeg,(—) using this sort of inductive argument.

We will setup the proof to work for arbitrary E, to E,11, up to some easy modifications.

Remark 10.3. There is an equivalence'

(Freeg, (£'F2(1))) , ~ (Ex(w) ® ZFy)ys, = Symy(Z'Fy).

No information about these free algebras is lost or gained by passage to the graded setting.

10.2 Spectral Sequence Argument

Now to E; ~+ E; and look at Freeg,(IF»(1)). By the bar-cobar equivalence we need to know
something about

Freeg, (£F2(1)) ~ @5 " Fa(n).

n>0

We think of this as a polynomial algebra. In fact, 77, Freeg, (XF»(1)) = Fy[x] with |x| = (1,1)
where the bidegree is (weight, topological degree). Let us consider Cobar(Freep, (XIF2(1))) whose
Postnikov tower gives rise to a spectral sequence

Cotorf, (2, F) = 7,_; Cobar(Freeg, (ZF2(1)))

s s
13Here, FreeIEZK“’ ({xh) = Free]EZK(” (S).
4Note that ZfVF, ~ (ZfF;)® is used.
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Construction 10.4 (Reminder). Recall that M ® 4 — is in general right-exact, so there exist left
derived functors Tor(—, —). Similarly for comodules there is a cotensor product M1, — which
is left-exact, so there is a right derived functor Cotor(—, —).

On IF[x] = 7, Freeg, (XIF2(1)) we have A(x) = x ® 1 +1® x and A(x") = A(x)" and
AP =x""®@1+1@ 2%

by thinking about the binomial formula. As a coalgebra we can decompose
Falx] = @ Fala™1/(x*")
n=0

and infinite tensor products are okay here since we are in the graded setting and every graded
part is finitely generated. Given this decomposition we get

Cotorsz[x](IFz, IFQ) = ® COtOrl;z[xzm]/(x2n1+1)(1F21 IFZ) = ® IFZ[yWZ]
m=0

= m=0
So the E>-page of the spectral sequence is Fa[yo, y1, - - - ].

Remark 10.5. If y,, survived the spectral sequence, it would give some class in 77, Cobar in
bidegree (2™,2™ —1).

Claim 10.6. There are no differentials in the spectral sequence, so E; = Ec..

Strategy: Look at what needs to appear in weight 2 and propagate using some "naturality’.

Note that the weight 2 part of Freep, (IF(1)) is
(E2(2) ® Fa)iis, = o2y, ® Fp = Conf§™(R?)z, @ F2 ~ RP7 ! @ F,

which has a copy of IF in degrees 0 and 1. In the spectral sequence we can identify these with 13
resp. y1 where y3 = Qo(1/o). We will think of 7 as Q1(yo). So essentially the E>-page looks like

E; = Falyo, Q1yo, Y2, - - - |. Infact, y; = le)yo. Indeed, one can "unpack’ the spectral sequence
and see it. Namely, x> € IFo[x] in the cobar complex really needed to represent Q1. Essentially
(x)? leads to Q1(—). We want to use a naturality argument as follows: Identify y» = Q1Q1Vo.
Consider

Freeg, (Q1(x)(2)) — Freeg, (x(1)).

Apply Bar everywhere to get a comodule map which on 77, sends Q;Q1(x) — y2. Moreover, by
naturality, y» cannot admit any differentials. Continue to get y; = le) (v0). We get

E> = Falyo, Qi(o), QP (o), - - 1
This recovers the result:

Theorem 10.7. The algebra Freeg,(IF;) is the polynomial algebra on the so-called admissible
sequences Q10 Qqo---.

Remark 10.8. More generally, Freeg, (IF») is the polynomial algebra on the admissible sequences
(@) 5 ofe2) (en-1)
Qi oy o--0Q "
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10 % Multiplication on BP(n) (Ryan Quinn)

Ryan: This is very cool stuff, in particular non-formal. 1t feels like magic!

Our magician then proceeds to ask the audience (Catherine) to take a card from his deck and
leave it in front of her desk. You have to keep reading to see the trick being reveiled.

I'm also grateful to Ryan for explaining many concepts in his talk to me very patiently! His
explanations worked like magic...

10 %21 Recap on BP
Recall that BP was built to be computable. We have
e BP = Zp)[v1,v2,---] and HeBP = P, C A..

Remark 10 %4.1. These have nice 77, and nice H,. That’s a rarity, as usually there is a trade-off
between nice homotopy vs. nice homology.

We know that there are maps MU — BP — BP(n) and 71,(BP(n)) = Z,[vy,- - -, va].
Example 10 %2.2. These BP(n) recover many familiar examples like:
(-1) BP(—1) ~
(0) BP(0) ~ Z(p),
(1) BP(1) ~ ku ~ ko ®C(1),"
(2) BP(2) = tmf;(3) ~ tmf @ DA(1).

The equivalence ku ~ ko ®C() is Wood’s theorem and tmf;(3) ~ tmf ® DA(1) is a tmf-analog
of Wood’s theorem.

Note in particular that these all have finite presentedness hypotheses, i.e. their homology are
finitely presented comodules over A, also called fp spectra due to Mahowald-Rezk.

Conjecture 10 %.3 (Hahn-Wilson). There is an equivalence Thick(BP(n)) ~ {fp type n spectra}.

10 %2.2 Multiplicative Structures

This has an interesting history. At first Kriz showed that BP has an E-structure but it turned
out to be wrong. However, it still led to interesting math.

Positive Results ‘ Negative Results
Chadwick-Mandell: BP is [E,. Hu-May-Kriz: MU is not Ee-BP.
Basterra-Mandell: BP is E,. Lawson, Senger: BP() is not Ey,2,5).

Hahn-Wilson: BP(n) is Ez-MU.

Remember the magic trick? Guess what happened for Hahn-Wilson.
Card Reveal: 3!
Someone from the audience (Jordan?): Where did you get 12 decks of cards?

Here are some applications:

15This is for p = 2. In general, it is the Adams summand /.
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¢ Hahn-Wilson: Redshift at heights.
¢ Burklund-Hahn-Levy-Schlank: L1,y % Lk for n > 2.

Ryan: As I learned from the question session Ly, % Lig)-'°

This is a pun of course. Funnily, there was a typo on the blackboard saying L(,) >~ Lk(. Ishan
said that it should say 2!

Ryan: [ didn't learn anything after all!

10 %2.3 Prerequisites
Consider

Torklx] (k%) TorA@) (k k)
k[x] '/ A(ox) '/, T(0?x).
Exta (o (k k) Extr,2, (k)

Example 10 %2.4. On the topological side we have

H,(Free®(5%)) = k[],
H.(£5%) = A(ox),
H.(HP®) = T(c?x).
Here, we use S° ~ QHP* by some Hopf invariant one thing.

But a bit of black magic now happens (not Ryan’s words), namely bar’ing yields
Hl(BU) ~ H4(SU) ~ H,(BSU)
which turns out to be polynomial again, so we can start again!

Remark 10 %.5. The point here is that bar’ing on the topological side corresponds to bar’ing
algebraically, namely Z[BX] ~ Z ®@z[x] Z. There is some subtlety going on here that Ryan and
I are confused about; namely the statement does not seem to be true unless one takes ® = @z
on the right side. Is this really what one wants?

10 %.4 Rough Sketch
The idea is to inductively build BP(n + 1) out of BP(n). Algebraically, we have
Z[Ull e /vi’l-l-l] = EXtAMu.(tSU,Hl) (MU.,Z[U], e /vi’l])

so we are hoping for
BP(n+1) ~ mMap . 6o,.1) (MU, BP(n)) .

We formulate the following goals:
¢ Make Apy(6v,,41) precise: This will come from bar’ing a polynomial algebra as above.

¢ Show how to give [E,-A-structures.

16See B.1(iii) to understand the joke.
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10 %.5 Enveloping Algebras

Let B be an [E,-A-algebra, i.e. B € Alg]En(LModA).

Definition 10 %.6. Write Z/{I(ql)(B) = B ®4 B° and inductively L[I(f)(B) =B ®UX’_1) (®) B°P for the
universal enveloping algebra.

Remark* 10 %4.7.

(i) The universal enveloping algebra is the endomorphism algebra L{XI)(B ) = end(Free]%n(A))
[HW22, Proposition 2.2.2].

(ii) There is an equivalence Mod]E”(LMod 4) ~ LMod, ), by a Schwede-Shipley argument
9 B u ) °Y pley arg

[Lurl?7, Theorem 7.1.2.1]. As such, this recovers that Modlg1 (LMod 4) consists of bimod-
ules.

Remark 10 %.8. There is a formula in terms of factorization homology

U (B) ~ /}Rn{O}B ~ [ B

This stuff might need high enough E,,.
Example 10 %.9. Let n = 2. Then, U (B) ~ THH(B/A) ~ B ®pe,por BP ~ [, B.

10 2.6 [E;-Centers

Recall that M as an R-module classically is a ring map R — End(M). Let ¢ be a stable
presentably symmetric monoidal co-category.

Definition 10 %2.10. The [E,-A-center of B called 3, -4(B) € Alg]EM (€) is defined by the
universal property that an [E,,;;-map R — 3f,-a(B) corresponds to realizing B as an [E,-R-
algebra.

Fact 10 %2.11. Let f : By — B,. Then, there exists an object 3E,-4(f), called centralizer.
(i) For f = idp we have 3, -4(idg) ~ 3E,-4(B).
(ii) The center 3g,-a(f) has underlying object map, (Bl)(Bl' By)in@.
A

Remark 10 %2.12. While the centralizer is more general and functorial, the center still has its
value. Indeed, the centralizer is in general [E,, while the center is [E,, ;1.

Remark* 10 %2.13. By 10 %.7(ii) we have 3g,-a(f) =~ Mapy, gex (LMOdA)(Bl, B)).
1

Remark* 10 %.14. These objects have the following universal properties:

(i) Let f : R — S, then the centralizer is final in diagrams of the form

3E,-A(f) ®R

PN

R S
f

in other words, 3g,-a(f) € Algg (¢) is terminal in
Algg (€) X alg, (LMod,);, Algg, (LModa)g /s
where the left functor is given by R ® — [Lur17, Definition 5.3.1.2].

(ii) Let M € €. The center 3(M) is the terminal object in Alg . ,(€) x4 {M} [Lurl?, Defini-
tion 5.3.1.6].
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10 %27 Designer Polynomial Algebras

This has a precursor.

Fact 10 %2.15 (Lurie). The free [E1-algebra Free® (52") admits an E,-structure.
Proof Sketch. Consider

N AN

Pic(Sp)

whose Thom spectrum is @) S*"¥. Lurie shows that this map is an [Eo-map, hence so is the
respective Thom spectrum. He also shows that the underlying Eq-algebra is Free®!(5?"). O

Hahn-Wilson do a more structured version for BP.

Construction 10 %.16. More specifically, we consider

Z x BU — Pic(Sp)

First, Lan is MU[B*!] with || = 2, a graded refinement of MUP. Restricting alongN — Z — Z
yields MUJ[y] with |y| = 2n. This is a refinement of the free [E;-MU-algebra MU[y] and is an
[E..-MU-algebra since | is an [E-map.

Here are some facts from Koszul duality.
Fact 10 %.17.

(i) There is an equivalence D™ MU[y] ~ Free%ﬁl(Z‘Zk_” MU) and it admits an [E,-MU-

algebra structure. It has even cells as an [E,-algebra for even n."”

(ii) There is an equivalence L{g(z)ll\)/[U[y](MU) ~ Bar(MU[y]).

This D is essentially bar’ing and then taking duals. Indeed, bar’ing makes MU[y] into a
coalgebra and we take duals to make it into an algebra again. That’s also the reason those
negative shifts appear. Since we are bar’ing a polynomial algebra, this is the exterior algebra
analog that we were looking for.

Part (ii) of that fact is done a bit differently in the published version of [HW22], this argument
is from version 2 on arXiv.

10 %4.8 Actual Strategy

Proceed by induction. The base case is BP(—1) ~ [F,,. For the inductive case we assume that
BP(n) is an E3-MU-algebra.

¢ Compute n.Uﬁ%(BP(@). See that it is exterior on odd degrees.

17This D is Bar, then Koszul dual.
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Consider the spectral sequence
Eth.MﬁL(BP(n)) (BP(11)s,BP(n)s) = 74 (35,-Mmu(BP(n)))

and because n.Uﬁb(BP(n)) is exterior, we see that the Ext term is polynomial on even
classes. Thus, the spectral sequence collapses.

¢ Find that there are no obstructions to being an E;-D® (MU[y])-algebra.

* Check that MU — BP(n) can similarly be upgraded.

¢ Check that 7, (3]E3-1D<4> mup MU — BP<n>)) = BP(n+1)..
Remark 10 %:.18. View this backwards. Our goal is to obtain
BP (1 +1) =~ 3, pwmupy (MU — BP(n))

but even to talk about this centralizer, we need to ensure that MU — BP(n) is a map of
E3-D® MU[y]-algebras. So we should start with BP(n) and we start caring about the easier
E3-MU-structure first. So we need to understand 3g,-mu(BP (7)) which can be understood from
a spectral sequence since its underlying object is a mapping spectrum (10 %.11).

The hard part is this computation of L[ﬁb(BP(n)) which we will focus on. This is done induc-
tively and the base case is IF,,.

Proposition 10 %2.19. The spectrum L{ﬁ%}(IFp) ~ THH(IF, / MU) is polynomial on even degrees.
Proof. 1t’s a general fact that about THH of Thom spectra that
THHMU) ~ MU ®Xx% SU ~ MUJ[SU].

Moreover, recall Bokstedt's result THH(F,) ~ F,[Q2S>] by which one can obtain from Hopkins-
Mahowald IF, ~ Th(Q?S? — BGL1(5;)), and one can check that there is a (suitable) factorization

THH(MU) THH(TF))

~

MU

This can be used to base change, so we can perform the following computation:
THH(F,/ MU) ~ THH(F,) ®thaumu) MU
~ F,[QS%] ®@muisu MU
~ (F,[QS%] @y MU) @mujsuy MU
~ FF,[QS°] @My MU ®(S ®sisu) S)
~ FF,[QS’] @y MU @ZFBSU
~ F,[QS° x BSU]

This is the product of two spectra with even homotopy groups (and there is a Kiinneth formula
for IFp). O

Remark* 10 %2.20. The base change argument is the following general higher algebra fact: Let

A—— B

N
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a commutative diagram of maps of [E1-algebras. Then, the diagram

R B
RModp ——<s RModc

Resil l*®cc

RMOdA B RMOdA

commutes where we view C € cBMod/4 via A — C. On the other hand, I don’t quite see why
this is true at the moment.

Now Uﬁ%(BP(n» = A(c---) is an exterior algebra by a bar computation. It follows the
following classical algebra fact:

Remark 10 %.21. Let I be a regular sequence in R. Then, Torg(R/I,R/I) = Agyi(ox; : x; € 1)
where ¢ is the shift/suspension operator. For example, Tory (k, k) = Ax(ox, oy).

Thus, Uﬁ%(BP(n)) is a polynomial algebra which is even. This uses input from the IF-case, the
E-page is a divided power algebra as it should be but some power operations miraculously
make it into a polynomial algebra. In particular, the IF,-case is really needed throughout and

does not only serve as the base step of the induction. Thus, we obtain US%(BPUZ» which is
exterior on odd degrees.

11 t-Structures, Filtered Objects, and Spectral Sequences (Lucy Gross-

man)
TALK 11
11.1 t-Structures 03.07.2025

We begin with t-structures which is a structure you can put on triangulated categories.

Definition 11.1. Let ¥ be a triangulated category. A t-structure on Z is a pair of full subcate-
gories 7>, Y<o C 2 such that:

(i) For X € Z~>0,Y € P<p we have Homg(X, Y[—1]) = 0.
(ii) There are inclusions Z>¢[1] C Z>0 and Z<o[—1] C Z<.

(iii) For any X € & there exists a cofiber sequence X' — X — X" with X' € Z-¢ and
X" e 930[—1].

Definition 11.2. Let ¢ be a stable co-category. A t-structure on ¥ is a t-structure on h%’.
We will write 6>¢ = h%>p and <o = h%<o.

Observation 11.3. There are truncation and connective cover functors sitting in adjunctions:
T<0
Cg>0 — Cg % « (g
20 4

Lemma 11.4. Let m < n. We write [, s = €>m N €<n. Then, there are natural equivalences
TomOT<y X T<p 0Ty and X o Ty X Topq1 02
Definition 11.5. Let ¢ hae a t-structure (¢>0, 6<¢). The heart of this is ¢V = C>0 N C<o.
Definition 11.6. The functor 77, : € — ¢ is defined by
YT 0T 0T<y X M 0T<y0Toy M T<OT>00 L " ™ T50 0 T<oX .
Remark 11.7. If we have a fiber sequence X — Y — Z we have an induced LES

- —— X Y Tyl — Ty 1 X —> -
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11.2 Filtrations

A lot of this follows notes from the fabled Ben Antieau [Ant24]. There was a funny moment in
the talk here (but that’s a secret known only to the Talbot participants).

Definition 11.8. Let ¢ be a stable co-category. A filtered object of ¢ is a functor X : Z — €.

Remark 11.9. The co-category of decreasing filtrations in ¢ is F¢& = Fun(Z°P,¢) and the
oco-category of increasing filtrations in Fun(Z, €).

We write a decreasing filtration F*® as an infinite sequence

Fs+1 Fs Psfl .

A decreasing filtration on X is a map F* — X of filtered objects.

Definition 11.10. Let F¢ be a decreasing filtration.
(i) Suppose that it is a filtration on X, then it is exhaustive if X ~ colim F°.
(ii) Itis complete if F*° = lim; F* ~ 0.

Remark 11.11. If " admits sequential colimits, then any F*® can be viewed as giving a filtration
on |F*| = F~*° = colim; F*.

Definition 11.12. Let ¢ be an co-category with a final object and cofibers. Suppose that F*® is a

decreasing filtration on . The associated graded pieces are grs. = cofib(F**1 — F¥) = F$ /ST,

11.3 Spectral Sequence Associated to Filtered Objects

Here is Lurie’s treatment of spectral sequences associated to filtered objects [Lurl7].

Definition 11.13. Let % be a pointed co-category and | be a linearly ordered set. Then, [ is
the poset of pairs of elements (7, j) with the lexicographic ordering. A J-complex is a functor
F: J1 — ¢ such that:

(i) for eachi € | the object F(i, i) is a zero object in ¥,

(ii) fori <j <k the square

F(i,j) —— F(i, k)

| |

F(,j) — E(, k)

is a pushout in €.
We write Gap(J, %) for the full subcategory of Fun(J!!l, %) spanned by the J-complexes.

Remark 11.14. Let € be a stable co-category with a t-structure and let X € Gap(Z, ¢). For all
i <j < kthereisaLES

- —— m(X(1, ) —— (X, k) —— mu(X(j, k) SECEN Th-1(X(@0, ) —— - --

in¢".
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Definition 11.15. For every p,q € Z and r > 1 we define
EV" =im (mpqX(p — 1, p) = MpiqX(p — L p+1—1))

with differential Ef'! — E/ 11! by restricting the differential which leads to a commutative
diagram

anqu(p —7,p) Ef’q ﬂp+qX(P -Lp+r-1)

|
5l dr J(s
~
g1 X(p —2r,p—1) —— Pt Tprg—rX(p—7r—1,p—1)
Lemma 11.16. Let ¢ be a pointed co-category admitting pushouts. Then, ] = JoU{—co} isa

linearly-ordered set containing a least element —co. So we can regard ]y as a linearly ordered
subset of J1 via i —+ (—o0,i). Then, Gap(], %) ~ Fun(jo, %).

Proof. Some left Kan extensions. O

Remark* 11.17. I think the idea is just that in J-complexes the diagonal is known to be 0 and
all squares are pushouts. So if we know the left-most vertical line (i.e. the line at —c0), we can
reconstruct all other objects by pushing out. Formally, this is realized by correctly left Kan
extending.

Construction 11.18. Let ¢ be a stable co-category with a t-structure and let X : Z — € be
a filtered object. Then, we can extend X to a complex in Gap(Z U {—oo},%). The spectral
sequence {E}",d,},>1 is the spectral sequence associated to the filtered object X.

Construction 11.19. Consider grg’j ] admitting a filtration

i — 0 —— FYF —— P72/ ——s .
where the superscript in the numerator is called weight. This is a complete, exhaustive filtration
on grg’j 1

If F* is a filtration, then the graded objects form a cochain complex with differential coming
from the fiber sequence

gI.erl Fs/FerZ grs

$*t1[1]. So we obtain a cochain complex'®

leading to 6 : gr® — gr
— ng—s—l[_S —-1] — gr;s[—s] N gr;s"'l[—s—}-l] e

Then, apply 7t; to obtain a cochain complex

e mgtt s — 1] —— mgrF[—s] —— mgr T [-s+1] —— -

—s—1 —s —s+1
Tl+s+1 81 Tlt+s 8YF Tlt4+s—1 8T

in¢".

We denote by Ch*(%) the co-category of coherent chain complexes on ¢ [Ant24, Definition
3.19].

18See [Ant24, Lemma 3.18] for a verification that the composite of two maps in this sequence is nullhomotopic.
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Theorem 11.20 (Ariotta’s E!-page theorem). Let ¢ be a stable co-category with sequential
colimits. The associated graded functor gr® : F¢ — Gr(%) factors through the forgetful functor
Ch*(%) — Gr(%) and induces an equivalence F¢ — Ch*(%) where F% is the oo-category of
complete decreasing filtrations in €.

This is a coherently souped-up version of the above cochain complex construction [Ant24, p.
10].

Definition 11.21. The co-category Ch*(%) inherits a pointwise t-structure, i.e. X*® is connective
if and only if each X" is in ¢~¢. Use 11.20 to put a t-structure onto F¢'. That t-structure is called
the Beilinson t-structure.

Remark* 11.22. Comparing this with the cochain complex constructed above, we e.g. see that a
connective object in the Beilinson t-structure requires gri[s] to be connective, i.e. gry € 6> .
Here is a summary [Ant24, Definition 3.24]:

¢ The connective objects in the Beilinson t-structure are those complete filtrations F® with
gri € C>n.

¢ The coconnective objects are those F*® with gr € €<_,.
e The heart is (F%¢)¥ ~ Ch*(€").

Construction 11.23 (Décalage). Let ¢ be a stable co-category with sequential limits/colimits
admitting a t-structure (450, 6<o). Let F* be a filtered object of 4. We write T2 F as the
Whitehead tower of F* with respect to the Beilinson t-structure on F%. After realization one
obtains a filtered object

C— ‘TZBH+1(F)‘ —_ ‘Tan(FN _ .

is a filtered object of €. This is Dec(F*), the décalage of F.

Remark* 11.24. The décalage is responsible for a certain page-shifting. In nice enough cases
and suitable indexing, there is an isomorphism E"(Dec(F*®)) = E™1(F*) [Ant24, Theorem 4.13].

Remark* 11.25. Ben gives a new proof that the two standard ways of constructing the AHSS
(filter the space vs. filter the spectrum) are equivalent by means of the décalage [Ant24, Corollary
9.3].

We end by mentioning that the Adams spectral sequence ASSg(X) comes from X ® E®**1, We
will see more about this in the next talk (12).

12 Synthetic Spectra (Jonathan Pedersen)

Slogan: Synthetic spectra E are a categorification of the E-Adams spectral sequence. TALK 12
03.07.2025

12.1 Adams Spectral Sequence

Consider (%, ®), then there is an object 1,n € €™l together with a map from a shift written as
T : lym(l) = Lym given by

0 0 1 1
|
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This encodes a lot of information, depicted as follows:

%ﬁl

€ (43

where 77! is essentially taking (co-)limits. In fact, X ® CT ~ @;cz X;/X;_1. Here are the
heuristics:

* — ® Ct extracts an Ej-page,
o 7 !extracts the E-page.

Remark 12.1. Let E be an E;-ring spectrum and consider the cobar construction
CBY(X) : n +— X @ E¥"H,
We create the filtered spectrum Tot (7>, CBE(X)) € Spﬁl.

You can also take partial totalizations and the difference is some décalage thing, i.e. the swap
between E; and E>-page.

Proposition 12.2. The associated spectral sequence is the BKSS/Adams spectral sequence.

Classically, consider E, then an Adams tower is a diagram

X = X,

Xq
b b
Ko Ky

satisfying the following:
(i) Xes1 = fib(f),
(ii) E ® X, is a retract of E ® K, in particular E.(f;) is mono,
(iii) K is the retract of E ® K,

(iv) There is an isomorphism

T (Ks) t=0,

Exty"(Ee, EoK;) =
el % {O else

Under nice conditions, we obtain
Ext} o (Es, Es) = 71-5(SE).

Observation 12.3. To categorify the E-Adams spectral sequence we should think about se-
quences A — B — C such that E,A — E.B — E,C is a short exact sequence. See the above
monic conditions.
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12.2 The Synthetic Category

Start with a nice category (stable, presentable, symmetric monoidal, t-structure, etc.). Then, we
want to force certain sequences to be exact.

To freely adjoin all colimits to an co-category, take PSh(%’) which satisfies
Fun'(PSh(%), 2) ~ Fun(¥, 2).
If K is a collection of simplicial sets, one can also form PSh* (%) satisfying
Fun®(PSh" (%), 2) ~ Fun(¥, 2).

Theorem 12.4. Let ¥ be an co-category with finite coproducts and K denote the collection
of filtered simplicial sets and A°P. Then, PSh"* (€¢) C PSh(%) are exactly the finite product-
preserving presheaves. We write PShy (%) = PSh* (%).

Start with PShy(Sp®) and stabilize this to get PShgp(Sp“’). Let’s now discuss symmetric
monoidality. Consider fiber sequences A — B — C, then we want E,A — E,B — E,C to be
a short exact sequence. This is already a problem: It is not closed under tensor products. The
map S — 5/2 is an HZ,-surjection. It is not anymore after applying — ® S/2.

Remark* 12.5. Indeed, a LES argument for /2 25 /2 —5/2®S5/2 shows
HZ\(S/2®5/2) = Z/2
while HZ4(5/2) = 0.

Definition 12.6. Let E be a ring spectrum, then we denote by SpP C Sp the full subcategory
on P such that E, P is projective.

Claim 12.7. Here, the SES property is now closed under ®.

Definition 12.8. We define Syn; as the full subcategory of PSh;P (Sp'P) consisting of those
X : (Sp'P)°P — Sp such that for cofiber sequences A — B — C with E, making it into an SES,
then X(C) — X(B) — X(A) is a fiber sequence.

Remark 12.9. This can also be obtained from the Grothendieck topology generated by the
E.-surjections. Then, Syn consists of the presheaves that are sheaves.

What are examples of synthetic spectra?

Example 12.10 (Less useful). Representables are examples. They don’t use anything about E, so
they are probably not every informative for ASS business.

Example 12.11 (More useful). Considery : Sp — PSh;P(Spfp), X — T>p mapsp(—,X). This is
not always a synthetic spectrum! Given A — B — C, then

T>0 mapsp(C, X) — T>0 mapsp(B, X) — T>0 rnapsp(A, O)
is a fiber sequence if and only if [B, X] — [A, X] is surjective.
Definition 12.12. The synthetic analogue v : Sp — Syn_ is the sheafification of y.

Lemma 12.13. Suppose that A — B — Cis an E,-SES, then vA — vB — vC is a fiber sequence.

A summarizing picture is
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Sp <— SynE —act Stabler,

which we will further discuss in the following.
Notation 12.14.
(i) We write §%0 = ¥ -byga+b 19
(i) We write S = 1S = 500,
(iii) We write 7 : S~ ! = Zy(Z718) — v(S) = SO0.
Here are some properties of synthetic spectra.
Fact 12.15.

(i) The category Syn; is stable, presentable and symmetric monoidal.
(ii) The synthetic analogue v : Sp — Syn; is symmetric monoidal.
(iii) The cofiber Ct admits an [E.-ring structure.

(iv) There is a t-structure in Syn; with connective part the colimit cocompletion of v(Sp).

12.3 Categorification of the Adams Spectral Sequence

Let’s at least see one feature that indicates a categorification of the Adams spectral sequence.

Definition 12.16. A map f : X — Y is of E-Adams filtration > s if it can be written as a
composite of s maps which are trivial on E,.

Proposition 12.17. A map f : X — Y has Adam:s filtration > s if and only if there exists a lift

»0—ky(Y)

T
e

v(X) —— v(Y)

v(f)
Proof. Consider
sy S,z M xSy
We get
v(Z7Y) 0 v(ZY) —— u(Y)
] | l |
v(Z) o v(X) Cv(h) —— v(Y)
v(f)

O

In the questions afterwards there was some discussion about geometric interpretations of

deformations and generic/special fibers. Such things exist, interpreted as some sort of stack
1

over A'/Gyy,.

19This is the [BHS23] convention.
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13 Chromatic Homotopy Theory is Algebraic when p > n? +n + 1
(Mattie Ji)

Recall the chromatic convergence theorem (7.21), i.e. for a p-local finite spectrum there is a limit
X~lm(---— Lg,X = --- = Lg, X — Lg X) .

In particular, this says that Sp is pretty complicated as n — oo.

Question 13.1. What if p > n?

Piotr discusses this in his PhD thesis (which was actually not the synthetic spectra paper
[Pst23]).

Theorem 13.2. Let E be a p-local Landweber exact spectrum?’ of height n. If p > n? +n+1,
then hSp; ~ h'D(E,E).

Remark 13.3.
(i) If n =1, then this was shown by Bousfield.
(ii) There is no equivalence Sp; ~ D(E,E).
(iii) Piotr showed for p > n?> +n+1+ % that 7 Spy ~ hyD(ELE).
(iv) A deep result of Hovey and Strickland shows that D(E,E) only depends on p and n.>! For

technical reasons, Piotr works with Johnson-Wilson theory E(1) = BP(n)[v, !]. For the
rest of the talk, E = E(n).

13.1 Observation 1: An Vanishing Line Results in Sp,

According to Piotr the following is folklore.

Theorem 13.4 (Folklore). Suppose p > n+1and M, N € Comodg,g. Then, Exti:f ((M,N)=0
forall s > n? + n.

Lemma 13.5. Suppose p > n + 1, then Extfng(E., E.) 2 0fors > n?+n.

Proof Idea. Note that p — 1 does not divide 1, so the Morava stabilizer group G,, has no p-torsion.
Thus,
n® = (virtual cohomological dimension) = (cohomological dimension).

Here is where the n2 pops up. By examining the (algebraic) chromatic spectral sequence you
will find the n shift. O
Notation 13.6. An N € Comodg, is a good target if Ext*/(E,, N) = 0 for s > n? + n.
By 13.5 we find that E, and its shifts are all good targets.
Observation 13.7. Consider an SES

0 M N p 0

where M is a good target. Then, N is a good target if and only if P is by the Ext LES. Thus,
finitely generated E,E-comodules are good targets (via direct sums and quotients). Taking
filtered colimits we deduce that the entire category consists of good targets.

Notation 13.8. An M € Comodg, is a good source if Ext*/(M, N) = 0 for s > n% + n and all
N.

From before we get that E, is a good source. Moreover, good source is closed under & and
quotients, so all of Comodg, are good sources. This finishes the proof of 13.4.

20For example Ej;.
ZSimilarly for Spy which is easier though.
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13.2 Observation 2: ASS collapses in ...
Proposition 13.9. Let p > n + 1 and 2p — 2 > n* 4 n. Then,

Exty*;(Ee, Eo) = 71o(LES)
collapses.
Proof. This essentially follows from the vanishing line (13.4).

N

: = ,
Figure 3: (Sorry Mattie, I did not live TeX this and am too lazy to TeX this.)

This uses that 77, E has elements concentrated in degree divisible by 2p — 2, as this is the case
for v; (and higher v,,). O
Consider Exty:(Ee X, EsY) = [X, Y]°.

Definition 13.10. If the degrees of E, X are concentrated in ¢ € Z/(2p — 2) we say that E, X is
pure of phase /.

Lemma 13.11. Suppose 2p — 2 > n? + n and let X, Y be E-local spectra such that E, X, E.Y are
both pure of phase ¢ € Z/(2p — 2). Then,

mapg, (X,Y) — Homg,g(E. X, E,Y)

is (2p — 2 — n? — n)-connected.

Lemma 13.12. Let2p > n?+nand p > n+1and M € Comodg,r and suppose that there
exists X such that E, X 2 M. Then, X is split if X ~ @, X’ where E.(X") is pure of phase /.

Proof. Use the Goerss-Hopkins obstruction theory. WLOG pretend that M is pure. The obstruc-
tions to recover M as E,X are in Extléfg’k(M, M)fork > 1. Ifk+2>Q2p—2)+2 > n’+n
which shows that the obstructions are 0 by the vanishing result (13.4). If k < 2p — 2, then the
obstructions also vanish by pureness. ]

Theorem 13.13. Let / € Z/(2p —2) and k = 2p — 2 — n? — n. Then, hkSpé ~ (hk)Comodﬁ-.E.
Definition 13.14. There is a Bousfield splitting functor

B : Comodg,r — hSpg, @ M — @ Rg(M‘]).
(€Z/(2p—2) (€Z)(2p—2)

We will use synthetic spectra to build an E-based resolution of Sp living in D(E,E). Here, our
synthetic spectra will be hypercomplete and connective which can be phrased as being vE-local
and altogether that we have spherical hypercomplete sheaves of spaces on SpF.

Theorem 13.15. There are towers
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Spy = MY ///fop N ///Otop
D(E.E) = M8 M —— a®

such that the last term is Comodg, g in both cases and the composite arrows and given by
homology in both cases.

We will write .# without the superscript when it holds for both.
Fact 13.16.

(i) Let X € .#;_1. Then, the obstruction to lifting X to X € My live in Extﬁé’é(uoX, upX)
where 1y means going to the end of the filtration.

(ii) Let X,Y € .#, for £ > 1. Then, there is a fiber sequence

map , (X,Y) ——— map , (41X, 1Y)

!

mapD(ComodE.E)(uoX, 4 0Y)

Proof of 13.2. The proof is divided into the following parts:
(i) For p > n+1 we write £ = n?> + n+k — 1. Then, we obtain Spy ~ hk%EOp and
IWD(EoE) =~ hy 4],
(ii) Forp >n?>+n+1+ % the Bousfield splitting functor g induces .7, ;Op ~ M, Zﬂg .
Here are some proof ideas.

(i) Essential surjectivity corresponds to vanishing of obstructions for lifting which we get by
the vanishing result. We show fully faithfulness by a connectivity argument with the fiber
sequence.

(ii) Recall Syn” ~ Comodg,r which we call discrete objects. Moreover, Syn is symmetric
monoidal with unit 1. Its Postnikov filtration

1 ﬂgl HSO

which induces a tower

Syn e Mod;_,(Syn) —— Modj_,(Syn).

Then, we define ./Z ;Op as the co-category of 1-,-modules X such that 1< ®1_, Xis discrete.
By Barnes and Roitzheim there exists P(1l) such that D(E.E) ~ Modp()(D(Comodkg,r)).

We define P = P(1)>o and we define .#, f '8 consists of P— £ = P® 1<,-modules M such
that P<p ®p_, M is discrete.

Proposition 13.17. The functor  induces a monadic adjunction

D(Comodg,r) —— Mody_,(Syn).

%
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It extends to an adjoint equivalence
7*
Modg, 1., —— Mody_,(Syn)
<t <t

We obtain a square

Mods_,(Syn) —~— Modg,a_,) (D(Comodk, £)=o)

| |

Modﬂgo(Syn) e MOd(ﬁ*(ﬂg))go (D(Comodg.g)zo)

Now B.1<; and P</ are the same thing.

13.3 Applications
With this p map Piotr discussed the algebraity of Pic.

Theorem 13.18 (Pstragowski). The map
Pic(SpK(n)) — Pic(EVE)

is an equivalence for 2p — 2 > n? + n where EYE & 71, L k) (E ® E) with Morava E-theory E.

Apparently, people just use PVK to speak about Paul VanKoughnett PVK because it’s a bit
unclear how his last name is pronounced. His name came up in a question about the (abstract)
Goerss-Hopkins obstruction theory paper [PV22].

14 Multiplicative Structure on Quotient Ring Spectra (Emma Brink)

Let R € CAlg(Sp). The goal of this talk is: TALK 14
03.07.2025
Theorem 14.1 (Burklund). Let R € CAlg(Sp) with x € R such that R/x admits a left unital

multiplication. Then, R/x"*! admits an [E,-algebra structure for n > 1.
We will prove something slightly stronger.

Theorem 14.2. Let ¥ € CAlg(Pr’) and ¢ = Ind(€“) where € C % is a monoidal subcategory.
Consider x : X — 1y in €“ such that 14 /x has a left unital multiplication. Then, 14/ x" 1
admits an [E,-algebra structure for n > 1.

We will be looking at maps g /x"+1 — Tg /Enx 1.
14.1 Obstruction Theory
Let ¢ € CAlg(Prk)and x : X — 1y with n € IN. Consider

cgfﬂ

/ ()

¢ €
Consider 14{XX(1)} — 14 @ XX(1). Suppose that
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Rl RZ . kal

in Alg]En(%gr)/(]l @® XX (1)) such that RF-1 — 1@ £X(1) is an equivalence in degrees < k — 1.

Write
Xj = fib (R = (Lgwr & EX(1));)

which leads to an [E1-pushout

1{X,(k)} —— R

[

1 — RF

Consider a map colimy RF — 1@ £X(1). We would like to have

R'= ]lf;l“":” JTx R?
such that for all k the square

o {Xk(k)} i> RK-1

| |

[_ ~
1o —— Rk

is a pushout square in the [E,-category, such that gr. (p) = p. Consider R' — R¥"1. Consider

This lower square is the obstruction to building the dashed arrow. We have ds € [X, Zﬁij}.
e We have gr, RF"1 = Rk~ 2 (1@ £X(1)). = 0 for e < 2 < k — 1. This implies
R~ R~ 14/
o Put X, = Q'"DI(Z"*1X). Here,
D} : 6 —— Fun(E,(k) | 5, 6) 42 4.
For [E, (k) = E, Xfin, {k} we consider

E,(k) — Fun(¢*,%¢) —2— Fun(¥, %)

<£t> _ ((gk ~ (g<“> — (5)
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This induces a map E, (k) / Zy — Fun(¢, %).
So we are interested in [Q!T"D}(Z"T1X), £l /x].

Remark 14.3. Recall that [E, (k) / L is the unordered configuration space of k points in R". It
has a Fox-Neuwirth cell structure which is finite and has cells in dimensions between 0 and
t=m-1)k—-1).

Let ¢ € €. Then, we get amap ¢®* : E = E,(k)/Xx — €. This yields a diagram

limE c®® —— limEgt—l c®e cee limEO%)@. .

where the fiber at the t — s term is [T cens Q' c®*. Apply 719 map(Q)"+1(—), £1/c) to the fiber
with ¢ = Z"+1X to obtain

7Tp map <Qn+1 H Qt—S(Zn-‘rl X)®k, Zﬂ/X)
(t—s) cells

so if these are all zero, we get surjections

[Ql-‘rnDlr{l(Zn—O—lX)l Z]lcg/X] “ @[Qn+l(zn+lx)®k, Z]lx]

cells

The upshot is that if
[Qn-i-ks (ZTH—I X)®k, Zﬂ/x} -0

for 0 < s < (k—1)(n — 1), then 1/x admits an [E,-algebra structure.

14.2 Deforming ¢

Theorem 14.4. Let ¥ € CAlg(Prl) and € = Ind(¢*) such that €“ C € admits a monoidal
subcategory where x : X — Ny in ¢“ admits a left unital mutliplication. If there exists a
deformation

Def(%, x)

/ (7)1’:1

¢ ¢

in CAlg(%) then, v(1/x7) admits an [E,-algebra structure for g > n.

Consider
Sp (PShy (%))

|

PSh¥(%v) PSh(¢%)

T~ N

cY ¢

where PSh{ (%) consists of those F : €“°P — S such that F preserves finite products and for
every a — b in €% such that p ® 1/x splits we get F(b) ~ limp F(€ (a)).

We have
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% Sp(PSh(%%)) N)Tl

€ ¢ €

\_//

Ifa — b % cis a cofiber sequence in ¢ such that p ® 1/x splits, then va — vb — vc is a cofiber
sequence.

So we get a cofiber sequence

Vg —— vlg/x —— vEX

Consider ¥ : X = QUEX — vlly. Then, (1/%)7! = 1/x7.
Claim 14.5. For g > n the object lpe¢/q7 admits an [E,-algebra structure

Proof. We need to consider
[02+n+r(zn+1(szx)®q)®k, ]l%)/fq}
and for 0 <r < (n — 1)(k — 1) the set
[02+n+r2n+1fqv(zx)®q,ﬂ(g/ft]} )

We claim that for y € € and s > ¢ there is an isomorphism [Q°vY, 1 /x7] = 0.

Consider p : a — b in ¥“ such that p ® 1/x admits a section. For all T € “ we have a
surjection
p*[_/]l/x ® T]‘/b”“’ - [_I]]‘/x ® T]‘f‘“

Soforall Y,T € €% and s > 0 we get [(UvY,v(1/x) ® vT] = 0. There is a cofiber sequence

(QEX)®T 1@ vl /T — 1/3 —— 1/39° L.

15 McClure’s Theorem (Preston Cranford)

Today was independence day and we were awaiting the american bbq team for their big show TaLk 15
this evening. 04.07.2025

Preston: Happy fourth of July.

15.1 Description of Theorem

Here is our main theorem.

Theorem 15.1 (McClure). The homotopy groups of spectrum FreeE{’jg (x)p is a free p-complete

5-ring?” where x is a singleton set.

Preston: There are not many proofs in the literature, so Ishan told me about the arqument in this talk.
...All mistakes are due to Ishan.

22G6¢ 9.15.
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Fact 15.2. Let R be a p-torsionfree ring. Then, there is a bijection
{é-structures} = {¢ : R — R ring homomorphism lifting the Frobenius R/p — R/p}.
Here, p(x) = x? 4 pd(x).
Claim 15.3. The ring Z[x, é(x), 52(x),- - - ];,\ is Free(;(x);,\.
Think xp = x, x1 = §(x), x2 = 6%(x), - - -.
Let us compute
Free%’jl[c (x) ~ @ <(KUQ)§;:9n>A ~ EB (KU;,\ ®BZn):
n>0 P on>0

where we note that this is the relative tensor product, so only one copy of KU;,\ remains in the
second equivalence which is why ¥, acts trivially leading to BX,,.

Remark 15.4. Here is a reminder for group cohomology: For H < G there are two maps
H*(BG; M) —— H*(BH; M)
Tr
then Tr o ¢ = [G : H] by the double coset formula.

152 Casel:n <p

For n < plet us discuss (KU /p)*(BZ,). Note also (KU /p)*(Be) = (KU /p)*. Note that homol-
ogy and cohomology are the same here because KU /p is a field.

Fact 15.5. We have rkg, (KU /P)e(BXy)) = rkzp((KUQ).(BZn)).
Proof. Consider KU;\ LN KU;,\ — KU /p and use that (KU /p).(BX,) is even. O

153 Case2:n=7p
Proposition 15.6. There is an isomorphism

(e trg,) : (KU /p)*(BZ,) — (KU /p)* & (KU /p)®
which is generated by elements called x? resp. Jx.

Pause. Dog entered.

Figure 4: The dog entered!
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Dog left.

Proof. Consider BC, C BX, where C, is a p-Sylow subgroup of .

Fact. Let H < G with [G : H] coprime to p and let M € Mod]pp. Then,
H*(G; M) = H*(H; M)°/" < H*(H, M).

Here is another claim:

Lemma. There is an isomorphism (KU /p)*(BC,) = Fp[t]/t? @ F,[B*] for |t| = 2
and |B| = 2.

Proof. Consider the AHSS
H? (BCy my(KU /p)) = (KU /p)""1(BCy).

We compute
H*(BCy; Fy) = F,[t] © Ap, (e)

with [t| = 2 and |e| = 1 with de = [p]rt = v1t? = BP~!tP. This essentially follows
from some Gysin sequence argument on

st BC, BS' —’— Bs.
Play with the spectral sequence to conclude. O

Remark®. Let R be any complex oriented cohomology theory. Then, there is an
isomorphism R*(BC,) = R[] /[p]t.

Consider B(C, x Aut(Cp)) C BZ,.

Claim. The ring (KU /p)* (B(C, x Aut(C,))) is of rank 2.
Proof. Consider

0 C Cp % Aut(C,) —— Aut(C,) — 0.

There is an isomorphism
(KU /p)*(B(C, » Aut(C,))) = (KU /p)"(BC,)" ()
by some Atiyah-Hirzebruch spectral sequence argument. The C,-action sends
1= 1,t = ut, 12— y?t?,- -

with ord(y) = n — 1. So only 1 and tP~1 are fixed by this. O
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I'm thankful to Preston for explaining the following to me:
Since [Z, : Cp x Aut(C,)] is coprime to p we conclude that there is an injection

(KU /p)*(Bxp) = (KU /p)*(B(Cp x Aut(Cy)))

by the double coset formula (15.4) or (equivalently) the first fact in this proof and an AHSS
argument. Thus, (KU /p)*(BZ,) is an [F,-vector space of dimension < 2.

We show that it is > 2. To do so, we wish to identify two of its summands. Indeed, there are
maps
tr: (KU /p)s, - KU /p and e:KU/p — (KU /p)=r.

On the other hand, (KU / p)th ~ (KU / p)hz%’ by Tate vanishing (8.12). Then, we can compute
that tr oe is p! = 0 on KU /p by the double coset formula (15.4). O

So up until now we know the first (p + 1)-degrees to be x, x2, - - - , x?, 5(x). We put ¢(¢) = 1 and
p(tr) = 0.

Lemma 15.7. This ¢ is additive: ¢(x +v) = ¢(x) + ¢(v).

Proof. Consider FreeKUQ (z) — FreeKUQ(x, Y), z+— x+y. Get

Freeyyy (v, ) = @) (KUp @ KU ) <"

n>0 g

The p-ary part is essentially indexed by KU;\ x{x,y}?P. We have some terms x” KU;\(BZF,) as
well as x'y/ KUFA,(B(Zi X %)) fori+j = pand y” KUFA,(BZP). Consider

FreeKUQ(z) — FreeKUﬁ(x, y) —— FreeKUQ(w)

where the second arrow is x — w, y — 0. O
Lemma 15.8. This ¢ is multiplicative ¢(xy) = ¢(x)(y).

Claim 15.9. The ring KU;\(BZQP) consists of three copies consisting of (6x)?, xP5x, x2P

Proof. We will look at Cp x Aut(Cp) x C, x Aut(Cp) x C. O

Claim 15.10. There is a surjection Frees(x) — FreeKUQ ).
Proof Sketch. Consider KUQ(BZP) and n = Y¥_, a;p’ with a; < p. Consider BC,™. O
Claim 15.11. The map is also injective.

Proof. Consider

/T

Frees(X) —— FreeKUA (w)

and (N[1/p])*® © KU leading to Fylxy"", 17", - 1. -

Some a priori reason of this result is the Atiyah-Segal completion theorem which allows you to
compute the K-theory of classifying spaces. A slogan is that p-complete A-rings are essentially
o-rings. There is some nice explanation about some operation in [CSY22]. For general heights
there is some notion of a T-algebra due to Rezk [Rez09].

Remark 15.12. In this talk we worked in LModKUQ but the results are also true in Spy ;.
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16 The Chromatic Nullstellensatz (Max Blans)

Suppose that L is an algebraically closed field. TALK 16
04.07.2025
Theorem 16.1 (Nullstellensatz, Hilbert). If (f1,---, fx) € L[x1,---,x,], then the L-algebra

Llxi,---,xq1/(f1,-- -, fr) admits a map to L.

Amap L[xy,- -+ ,x,]/(f1,- - -, fx) is the choice of n elements on which the polynomials fi, - - - , fx
vanish; hence Nullstellensatz

We want to move this theorem to chromatic homotopy theory for which we need a more
categorical formulation of the result.

Observation 16.2. These L[x1,---,x,]/(f1,- -, fx) are precisely the compact, non-terminal
objects in Alg; .

Max: The following theorem is harder. ...It required more people.

Theorem 16.3 (Chromatic Nullstellensatz, Burklund-Schlank-Yuan). Let E(L) be Morava E-
theory. Every compact, non-terminal object in CAlgE(L) CAlgg(Spry)) admits a map to
E(L).

Remark* 16.4. In some sense, Hilbert’s Nullstellensatz is characterizes algebraically closed
fields. In this interpretation, Morava E-theory should be viewed as the algebraically closed
tields in chromatic homotopy theory.

The hard thing is to construct maps to Morava E-theory. This is a consequence of:

Theorem 16.5. Let0 # R € CAlg(SpT(n)). Then, there exists a map R — E(L).

The goal of this talk is to give a proof at height 1. The idea is essentially the same but there are
more power operations at higher heights.

16.1 Morava E-Theory & Tilting

Recall that an IF-algebra is perfect if the Frobenius is an isomorphism.

Theorem 16.6 (Goerss-Hopkins-Miller, Lurie). Let A be a perfect IF,-algebra and IHy be a formal
group over A of height n. Then, there exists a 2-periodic E(A;Hg) € CAlg(Sp K(n)) with

T E(A; Ho) = W(A)[u, - - -,y 1] [u™]
with |u| = 2. This is functorial in (A; Hy).
We will work at height 1 over E(F,; G;,;) ~ KUQ.

Theorem 16.7. There is an adjunction
Perfp, % CAlgﬁUﬁ
such that:
(i) E(A) = E(A;Gn),
(ii) E(—) is fully faithful, i.e. the adjunction is a colocalization.

(iii) There is an isomorphism R’ (7IOR)/p)b = lim <7TQR/p % R /p +— )p . )

Since Perfg , is a 1-category, this means that it is easy to map out of Morava E-theory.
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16.2 The Proof in a Nutshell
Suppose 0 % R € CAlg(Spr(;))- We want a map R — E(L) for some algebraically closed field L.
Observation 16.8. Here are two reductions.

(i) Wehave R - R ® KUQ % 0 where the latter uses that KU;]\ ®— is conservative.”> So we
can assume that R is a KUFA,-algebra by replacing R with R ® KU;,\.

(ii) It suffices to give a map R — E(A) for some A 2 0 because we can then postcompose by
E(A) » E(L)viaA — A/m — A/m.

Let us formulate the proof strategy.

Proof Idea. We have the counit map E(R”) — R from 16.7 and want to modify R until this
becomes an equivalence. O

Example 16.9. Suppose that a € 711R. Consider the pushout

KU, {z'} =—% R

o

KU, —— R’
where the upper-left corner is the free KUQ -algebra on a generator. So« = 0in R’
Definition 16.10. Let R € CAlg(Spy())-
(i) Amap f: M — Nin Modﬁ‘{(Spm)) is nilpotent if f¥rk ~ 0 for k > 0.

(ii) Amap R — Sin CAlg(Spy,)) detects nilpotence if f : M — N is nilpotent if and only if
f ®r S is nilpotent.

Example 16.11. If R — S is conservative (i.e. — ®g S is conservative), then it detects nilpotence.
Observation 16.12. Suppose that 0 % R — S detects nilpotence, then S # 0.
Proof*. Pick f = id. O

Proposition 16.13. Nilpotence detecting maps are closed under base change, retracts, transfinite
compositions (weakly saturated).

Here is our strategy: We will construct
(i) f: EQF[E/77]) = E(F[EYP7]) x E(Fy),
(i) ¢ :KU,{z} — E(A) with A to be determined,
(iii) h: KUp{z'} — KU;,.

We show that if R has the right lifting property with respect to these maps, then R ~ E(R’) plus
these maps are nilpotence detecting.

Lemma* 16.14 (Small Object Argument). Let ¥ € Pr" and S be a set of morphisms in €. Then,
every map f : X — Z admits a factorization

1 think this strictly speaking uses the height 1 telescope conjecture so E(1) ~ KUy, sees all of Spr;).
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XLY#Z

where f’ € S lies in the weak saturated closed of Sand S L f".

Proof*. See [Lurll, Proposition 1.4.7]. I think [Lan21, Proposition 1.3.9] explains this quite well
(modulo some modifications to make this work for co-land). I forgot about the small object
argument, so let me try to sketch the proof including the co-modifications.

We consider the collection of all squares

U — X

L)

Vo —— Z
where U; — V; is a map in S. Indexing coproducts over all such squares, we can take a pushout

U, —— X

Repeat this for X — E!(f) many times for a big enough ordinal to obtain a tower

X —— ENf) —— E3(f) Z.
For that big enough ordinal a we put E*(f) = colim;<, EX(f) and so we obtain a factorization
X — EYf) — Z

The first map lies in S by the closure properties of weak saturation. The second map has the
RLP with respect to S by a compactness argument. Since % is presentable, we can choose
some cardinal x such that all U; are xk-compact and so having chosen a big enough, we obtain
factorizations

Us - EF(f) —— EX(f)
Vs » EFYY(f) —— Z
by compactness which allows us to solve our lifting problem. ]

This yields the version stated in [BSY22, Proposition 4.35].

Corollary* 16.15 ([BSY22, Proposition 4.35]). Let ¢ € Pr" and S be a weakly saturated class of
morphisms in ¢ with Sy C S be a set. Let A € €. Then, there exists a map A — B in ¢ such
that

(i) Themap A — Bisin S.
(ii) For every f € So we have f 1 B.

Proof*. Apply the small object argument (16.14) to A — *«. ]
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Theorem* 16.16 ([BSY22, Theorem 4.36]). The collection of nilpotence detecting maps is weakly

saturated in CAIg(Spr)).

Some of the following is also discussed in this talk. But for clarity of the main argument let me

already include the result at this point.

Proposition* 16.17 ([BSY22, Theorem 4.40, Proposition 5.15, 5.17]). The maps f, g, h detect

nilpotence.

With 16.16 and 16.17 we can run a small object argument (16.15) to produce a

nilpotence

detecting map R — S with f,g,h L S. This allows us to show deduce S ~ E(A) for some
perfect A of Krull dimension 0 [BSY22, Proposition 5.11]. The main ingredients are:

e Use f to show that E ($°) = Sis injective on 7.
¢ Use g to show that E (") — S'is surjective on 7.
e Use h to show that ;S = 0.

See also [BSY22, Proposition 5.9].

16.3 The Map h
It is clear that & 1. R implies 1R = 0.
KUQ{Zl} *: R

-
z’HOl e

A
KU,
Example 16.18. One computes n.IF;C” = ]Fp[tzil] ® A(x—1) with fa_q = £, 1.

Example 16.19. Consider Q{z'} = Q @ Q[1] — Q.

With the bar spectral sequence you can compute 77, KUQ {z'} = AL, 9zh), p2(2h),
end, you show that £ is nilpotence detecting.

16.4 The Map g
We want to construct g : KU;\{ZO} — E(A). Last talk we saw
mo KU {2’} = Z,[2°,6(2°), -- 1 = Free,(2")).
Moreover, moE(A) = W(A) and it turns out that this has a unique J-ring structure.

Theorem 16.20 (Joyal). Let A € CRing, then W(A) is the cofree é-ring on A.

-..). In the

This is part of the story that gets more complicated at higher heights. This cofreeness statement
is still true at higher heights for the T-algebra structure, but it is much harder to prove and

maybe the most difficult part of the paper.

Proposition 16.21. Let A € Perfp,. The map

(—/p)* : o Map, Algg (KU;\{ZO},E(A)) — Homper;,, ((Free(g(zO) /p)f, A

)

)

—)P —)P
is a bijection. Here, the colimit perfection is given by B¥ = colim (B g >
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Proof. String together some adjunctions:

o Map(KUS {2}, E(A)) = o0 E(A)
=~ W(A)
o Hom(g(Freeg(zo), W(A))
= Homcring(Free;(2°), A)
o Homperf]]:p ((Frees(z°)/ P)#, A).

O]

Definition 16.22. Let g : KU;\{ZO} — E((Frees(z")/p)*) correspond to id pree,(20) /py¢ under the
bijection of 16.21.

Proposition 16.23. If ¢ | R, then E(R”) — E is surjective on 7.

Proof. Let x € moR. Consider

KU/ {2} % R +—— E(R)

a

Proposition 16.24. The map g detects nilpotence.

Proof. Since — ®ku) KU /p: ModﬁUQ — ModIQUQ is conservative, it suffices to check this after
modding out by p. On 7y the map g/p is given by

Free;(z°)/p = I, [20,5(20),- : } — IFp [(zo)l/pw,- . } = (Free;(z°)/p)*.

This is a faithfully flat map. By the Tor spectral sequence we obtain conservativity. O

16.5 The Map f
Consider the map f : E(F,[t'/P"]) — E(F,[t*'/7"]) x E(F,) induced by t ~ (t,0).
Proposition 16.25. We have f | R if and only if R’ = (759R/p)’ is of Krull dimension 0.

Proof. The condition f L Ris equivalent to (F,[t] — F,[t*] x F,) L R’ by applying adjunctions.
This is equivalent to R’ being reduced and having Krull dimension 0 by some commutative
algebra fact. The reducedness is automatic since R’ is perfect. O

Proposition 16.26. Suppose that R is of Krull dimension 0. Then, E(R”) — R is injective on 77y.
Proof. We claim that it suffices to check this on 779o(—)/p. Indeed, consider

=

To(E(R?)) —— W(mER”) "B W(rmE(R?)/p)

l ! |

moR ——— W(moR) W W(rtoR/p)
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The right vertical map is injective because W(—) preserve injective maps and we assumed that
we know this on 779(—)/p. But then going around the rectangle the other way is also injective
and hence in particular mo(E(R?)) — moR.

Now to check it. Consider 7o(E(R”))/p — mo(R)/p where

Rb = ((WOR)/P)b = lim <7TQR/p ﬂ ﬂOR/p (ﬂ .. ) .

Suppose that y € R’ is in the kernel. Since R’ is of Krull dimension 0, we get that (y) is generated
by the idempotent e. All components of e in this limit are idempotent and nilpotent. It follows
thate =y = 0. O

Applications will follow in the next talk!
17 Applications of Chromatic Nullstellensatz (Vignesh Subrama-
nian)

Vignesh: It was a long time ago that we were interested in spaces.

17.1 The Result and Precursors

Consider the Goodwillie tower of co-categories (in the sense of Gijs)

Sp ~ S S
Here is a first evidence for such results:

Theorem 17.1 (Quillen, Sullivan). There is a diagram

cdgA
>1 -
54 \ ~
dgLie
of fully faithful functors.
In the chromatic tower
Q K(1) K(2) e IFy

we considered the first point Q. One could also consider the point at oo, namely [F,, leading to:

Theorem 17.2 (Mandell). There is a fully faithful functor S pz—ipl,ft

=X
— CAlgg , X — F,.
But we have so many chromatic points in between. That will be our goal:
Theorem 17.3 (Hopkins-Lurie, Burklund-Schlank-Yuan). There is a fully faithful functor

(SP?_}EH)(’P — CAlg. (Spy,) = CAlgp , X — EX.
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17.2 Setting Up Hopkins-Lurie Equivalence
Here, E,, = E,(L) for an algebraically closed field L.

Let A be an Ew-K(n)-local ring and consider the global sections functor

Mod A (Sp,)™ = Moda(Spy,), F— C*(X;F) = li}rinP

where C*(X; F) has an action of C*(X; A). So we obtain a factorization

Modc(x;4)(SPk(n)
Question 17.4. Is the left arrow is an equivalence?

Recall by ambidexterity (8.12) that for a p-finite space X and a functor F : X — Spy,, thereisa
map Nmy : colimyx F — limy F which is an equivalence.

Theorem 17.5. Let f : X — Y be a map of spaces and let A € Alg (Spﬁ(n)).

(i) Assume that fib f is m-truncated and p-finite. Then,
G : LMody4 (Sp;&n)) — LMody, 4 (Spﬁ(n))

has a fully faithful left adjoint.”*
(ii) If fib f is p-finite and n-truncated, then G is an equivalence.
Remark* 17.6. Taking f : X — * answers the question (17.4).
Proposition 17.7 (Push-Pull). Let f : X — Y be m-truncated and 7r-finite and A € Alg(Sp}g(n)).
Let M € RModf*A(Spfg(n)) and N € LModA(Sp}g(n)). Then map
BuN : fxM @4 N — fu(M @4 f*N)
is an equivalence.

Proof. 1t’s enough to do the case Y =~ x. It's a standard good object argument that Lurie uses
all the time. Fix M and consider ¢ C LMod 4(Sp,)) consisting of N such that S,y is an
equivalence.

Observe A € ¢ and that ¢ is closed under colimits since f. preserves colimits by an ambidex-
terity argument (8.12). Thus, ¥ ~ LMod 4(Sp K(n)). O

Remark 17.8. Thus, there is an equivalence C*(X; M) ~ C*(X; A) ® M for M € LModA(SpK(n)).
This is a surprising statement.

Theorem 17.9. Let A be a K(n)-local E-ring. Consider the pullback
X — X
L7

Y —— Y

24Here, f. A is given by right Kan extension.
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in § which with C*(—; A) leads to

AY — 5 AX

Lo

AY{ AX,
If Y is n-truncated and p-finite, X is m-type, then the above diagram is a pushout in CAlg,.
We will prove 17.3 through the following equivalent statements.

Proposition 17.10. Let A be an E.-K(1)-local ring. The following are equivalent.
. . p-fin\ °P A - .
(i) The functor C*(—; A) : (Sgn ) — CAlg, is fully faithful.
(ii)) Forall X € S gﬁin the unit map X — Map AlgA(AX, A) is an equivalence.
(iii) Check (ii) for X = K(Z/p, n).

Proof. Note that fully faithfulness is Map(Y, X) — Map(AX, AY). So (i) implies (ii) by putting
Y = x. Moreover, (ii) = (iii) is clear.

We check (ii)) = (i)". Need
Map,(Y, X) — MapCAlgA(AX, AY)
for p-finite n-truncated X.
For (iii) = (ii))letF:S — S, X — MapCAlgA (AX,A)and « : id = F. Then,

¢ = {X : ais equivalence} C Sgﬁin.

By (iii) we get K(Z/p, n) € ¢, then an Eilenberg-Moore argument implies that ¢ is closed under
finite limits. So K(Z/p, m) € € for all m < n. For m = 0 we get that finite sets are in ¥. Can
then write

0 G’ G G" 0
H

Z/p

leading to a fiber sequence
K(G',m) —— K(G,m) —— K(G",m)

which lets you recover all n-truncated p-finite spaces. O
17.3 Orientation Theory after Burklund-Schlank-Yuan Strict
Set A = E,, in 17.10. Recall the Fourier transform Ly Eq[Z/p] ~ Ex (Z/pm 25 Then,
KZ/p,
Mapc,gn (EX@/pm E Y o Mapg, (Z/p,glEn)

is the space of strict units which we wish to understand.

Definition 17.11.
BRecall K(Z/p,n) ~ Q®Z/p[n].
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(i) The strict elements are elements in MapSp>0 (S[IN1], R).
(ii) The Z/p-strict units are Mapg, (Z/p,glR).

Remark 17.12. Quotienting out by strict elements preserves the [E,,-structure. This is because
IN compared to Free(x) has no power operation data and so quotienting by it doesn’t kill
power operations which is why it is well-behaved with respect to multiplicative structures. In
discussion we’ve Ishan, we’ve concluded that the only strict elements in S should be 0 and 1.

Let L be algebraically closed and 0 % R € CAlgé(L). By the chromatic Nullstellensatz (16.3)
there is a map R — E(L). There is a special property for such maps:

Theorem 17.13. Let R be as above, then the map pic (Mod%\(m) — pic (Mody) has a retract.

Proof*. See [BSY22, Theorem 8.1]. This is a non-trivial result which depends on the chromatic
Nullstellensatz (16.3). O

Recall that (—)" means that the tensor product is in the K(n)-local category.

With this, we return to the strict unit computation.

Proposition 17.14. Let ¥ € CAlg(Pr") and f : X — pic(%) be a map in Sp-, then consider its
Thom spectrum Mf € CAlg(%). We have the following equivalent statements:

(i) The map f is nullhomotopic.
(ii) There exists a map Mf — l,
(iii) The map pic(%¢) — pic(Mod (%)) has a retract.
Proof*.
(i) = (ii): By()weget Mf ¥ X®1 = ¢ @1 ~ 1.
(i) = (iii): This comes from 1y — Mf — 1¢.
(iii) = (i): By (iii) it suffices to show that the composite
X —L pic(#) —— pic (Mody (%))
is nullhomotopic. This is the same thing as an M f-orientation which corresponds to a
map Mf — Mf by [ACB19, Lemma 3.15]. Choose id ;.

O]

Corollary 17.15. Let L be an algebraically closed field an f : X — pic (Modé(L)) be a map in
Sp-o- Then, the following are equivalent:

() Mf £0,
(ii) Thereisa map Mf — E(L) in CAlgg(L).
(iii) The map f is nullhomotopic.
(iv) Mf ~ E(L)[X] € CAlgé(L).

Proof*. The directions (iii) == (iv) == (i) are fine. For (ii) == (iii) see 17.14. Besides
all these formal parts, the implication (i) = (ii) is really a consequence of the Chromatic
Nullstellensatz. Namely, 17.14(iii) holds by 17.13. O
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Remark* 17.16. There is a K(n)-local version as a direct consequence of the above [BSY22,
Corollary 8.13].

Proposition 17.17. Let L be an algebraically closed field and H be a p-torsion abelian group.
Then,
mapg,,  (H,Pic(Modgy,))) ~ "' H"

where H* stands for the Pontryagin dual.

Proof. By some reduction arguments it’s enough to prove for H finite.

Let
f € my (mapSPZO(H, piC(Modﬁ(L))> 719 (mapspZO(Z’”H, piC(Modﬁ(L)))) ,

i.e. we are looking at f : B"H — PiC(Modg(L)), so Mf ~ limpny f by ambidexterity (8.12). For
m < nand m > n + 2 it holds that

lim : Fun (B"™H, Mod}, Mod}
I)I;H un( P OdE(L)) — OdE(L)

is conservative [HL13, Corollary 5.4.4, 5.4.5(2)]. So in these cases Mf # 0 implying that f is
nullhomotopic by orientation theory (17.15). So we are reduced to the functor

H > [Z"'H, pic(Mody )|
which can be checked to correspond to H — H* [BSY22, Proposition 8.14]. O

The case H = C, computes the strict units as desired.

Remark 17.18. An application of this material is a redshift result: Let R & CAlg?(n), then
Lru4+1)K(R) # 0.

18 Conclusion & Outlook (Gijs Heuts)

Gijs will try to touch on the following: TALK 18
04.07.2025
¢ Interaction between different heights,

¢ Interaction between chromatic homotopy theory & geometry & homological stability.

18.1 Interaction between Different Heights

For classical algebra there is already a thick subcategory theorem in D(Z)“. These are pretty
simple though. A picture for Spec Z is

IFZ IF\3 ]F5 ) N
Q
In higher algebra, consider Sp® = D(S)“ and now SpecS is precisely described by the thick
subcategory theorem:
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IFz IF3 1F5 IF7
K K@s  K@s K@)
K1, K() K<1)y
\ Q

Then, homotopy theory breaks into two parts:

(i) Understand the monochromatic pieces, i.e. Spy,) or Spy(,. These are the local parts.

(ii) Glue together pieces into a global picture of Sp.

This week we mostly focused on (i) and not so much about (ii). But we did a little bit, e.g.
chromatic convergence. Let us start by mentioning some problems for (ii).

(a) Blueshift & redshift: What’s up with blueshift?

(b)

Theorem 18.1 (Kuhn). Let X € LJ;Sp and G be a finite group acting on X. Then,
X6 = cofib(X),c — X"C)
is Li_l—local.

Redshift comes out of the study of algebraic K-theory which is of course a hot topic these
days. Since there has already been a lot of workshops on recently, Gijs and Ishan decided
not to go in that direction for this Talbot.

Observation 18.2 (Ausoni-Rognes). Taking K-theory increases height by 1.

This was an informal thing but there are some ways of making this into a theorem.

Theorem 18.3 (Many people). Let R € CAlg(SpT(n)). Then, L1(,41)K(R) % 0.

Quantitative versions of redshift: There are some calculations that one could do.

e What is Ly(,+1)K(Ep)?
e Whatis LT(Z)K(SK(l))?
We have seen this week that we have good ring spectra approximating Sk(,), namely

E,. We don’t have this for Sr(,) when n > 2 (yet). You could hope that something like
L7)K(Sk(1y) is a good approximation for Sty).

The challenge is to find good ring spectra over St(;).
Chromatic splitting conjecture (Hopkins): Gijs gave an entire speech that in our field there
should be more conjectures! People need to write up their work and need to state their

questions. It’s a lot cooler to prove Levy’s Conjecture than to say that you have computed
some obscure thing.
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()

Lemma 18.4 (Arithmetic fracture square). Let X € Sp,. Then, there is a pullback square

X —— Xy

"

Xo — (X))o
Similarly chromatically:

Lemma 18.5 (Chromatic fracture square). There is a pullback square

L, X — LK(n)X
. |
Ly 1X — Lyp-1LgmX

forn > 1.

The chromatic splitting conjecture says that it’s supposed to be easier than gluing succes-
sively.

Conjecture 18.6 (Chromatic splitting conjecture, Hopkins). The map L, 1X — L, _1LguX
is the inclusion of a summand.

If this were true, it would have a lot of funny consequences.

Corollary 18.7. If X is the p-completion of a finite spectrum, then X — [],,>o L)X is the
inclusion of a summand.

So one doesn’t need to know so much about the gluing maps to understand X. The
conjecture is known for n < 2 by brute force calculation. These calculations is the reason
that Mike made this conjecture. But it seems like there is no conceptual understanding for
this.

Unstable Homotopy Theory: We saw this week that there are those Bousfield-Kuhn
functors @, : S, — Spy, forn > 0 which in some sense record the "v,-periodic homotopy
types’ of spaces.

Question 18.8. How do the different ®,, relate?
Here is a more refined question.

Lemma 18.9. The functor ®, lifts to an equivalence S,, — Lie(Spr,))-

The challenge is to come up with a theory of "transchromatic Lie algebras’ Lie<,. These
should combine ®; and Lie(Spr;) for i < n into one object.

Warning 18.10. The category Lie(L{;Sp) is the wrong answer.

The moral reason is that S, becomes “algebraic” when localized at a single height, but this
can never be algebraic when localized at more than one height.

Gijs said something slightly vague but after his speech about conjectures, we pressed him
to state a more precise conjecture.
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18.2

Conjecture 18.11 (Heuts” European Talbot Conjecture). The adjunction
COSP(LJ;Sf“’—torsion) © , Lj;Sf“’—torsion
P

is monadic, ®O preserves sifted colimits and coSp(L{;Sf “-torsion

(in terms of some recollement).

) admits a nice description

Gijs: This is vague but I blame mistakes to the note takers.

This is related to a theorem from Yuqing in the monochromatic setting. Classically these
coSp for spaces are 0.

Connections to Geometry/Homological Stability

This week we constructed a lot of funky cohomology theories while the cohomology theories
we started out with had a good geometric interpretation.

(i)

(if)

(iii)

Are there geometric descriptions of cochains for E,; or K(n)? Is there a geometric descrip-
tion for tmf (Stolz-Teichner program)? This is supposed to be about 2D field theories with
a million adjectives. What adjectives to put... nobody knows.

Gijs: The spectrum tmf comes from physics and they hold themselves to a higher standard and can
prove many things we cannot.

A cool thing for K-theory is index theory, like the Atiyah-Singer index theorem which
connects geometry with analysis. Witten’s original idea is that tmf should play a similar
role with indices on free loop spaces.

Manifolds: In the past years there was lots of progress of computing H*(—; Q) and
e(—) ® Q of BDiff(M). The methods are quite robust! Why not K-theory? From the point
of view of this week you should think that K-theory is much easier than IF), e.g. in terms
of power operations there is just the § while on IF, there are all these Q;’s.

Homological stability: Randall-Williams has been speaking a lot about this and it sounds
like things related to the periodicity theorem. Say R is a graded [E»-algebra over k.
Consider for example R = {C,(Conf;(IR?); k) }450 or R = {Ce(Gy; k) }4>0 where [ [;= BG4
should be a braided monoidal groupoid. Then, we can talk about its bigraded homotopy
groups 7, 4R = 7,R(d).

Stability says that we have some 0 € 1R = 7oR(1) such that the cofiber R/c has a
vanishing line, i.e. 11, 4(R/0) = 0 for some d < An + B. In other words, ¢ is a homology
isomorphism in some range.

Observation 18.12 (GKRW). Let R be the [Ey-algebra of Co(MCGg(S)) of some surface S.2°
Then,

(i) We have 71, 4(R/0) = 0ford < .

(ii) There are maps ¢ : S>> ® R/c — R/co such that 7, 4(R/(c, ¢)) = 0 ford < 3.
Equivalently,
Hd—Z(anSI Gn—4) — Hd(Gnr Gn—l)-

This is related to metastability.

26Here, S is a two holed torus with a disc cut out. Gijs: This will really test the skills of the note takes.

71



Qi Zhu European Talbot 2025

Theorem 18.13 (Periodicity Theorem). Let R be a good enough graded E,-ring over IF,.
Then, there are self-maps

a1 19" @R = R,

Ky : Snz’dz ® R/Dél — R/le,

w;: S @R /(g wio1) = Rf(ag, -+ i)
such that:

(i) each a; is not nilpotent,

(i) R/(aq,- -, ;) has a vanishing line of slope < 1.

A Complex-Oriented Cohomology Theories

Here is an interactive and improvised part by the mentors.

A1 Complex Orientations

Definition A.1. Let E be a cohomology theory. Then, E is complex orientable if
E%(CP%®) — EX(CP") = E%(sY)

is surjective. An lift of 1 € E%(S?) is a complex orientation of E.

In this case, we have a good notion of Chern classes.

Fact A.2. There is an isomorphism E*(CP*) = E°*[t].

This t should be thought of as the first Chern class on the universal line bundle on CP*.

Quillen thought ¢;(L; ® L) = c1(L1) + c1(Lp) is correct in general and arrived at all sorts of
ridiculous contradictions. So he was debating what was actually the correct formula.

There is a map m : CP* x CP* — CP® inducing
m* : E*[t] — E*[x,y], t — f(x,y).
Then, this f(x,y) is a formal group law over E®, i.e. it satisfies the formulas
@) foy) = fly, %),
(i) f(x,0)=x fO,y) =y,

(iii) f(f(x,y),2) = f(x, f(y,2))-

In other words, applying Spf, this is really the structure of a formal group (with the choice of a
coordinate).

Example A.3. For example HZ, KU, MU. In fact, any even ring spectrum is complex orientable.
Do obstruction theory! You want to construct a lift

Cp*®

~
N
~
~
~
~
~
S

cpP! —— O®2E
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and the obstructions are all in odd classes.

Proof*. Here are more details. Proceed inductively. We obtain CP"*! from CP" by attaching an
(21 4 2)-cell, i.e. there is a cofiber sequence §2ntl _, Cp* — CP"*1, so we are considering the
diagram

Cpn—i-l

~
~
~
~
~
~
\)
~

CcpP —— Q®2E

=

SZnJrl

where by the universal property of cofibers®” the dashed arrow exists if and only if the composite
2+l 5 CP" — QO®F2E is nullhomotopic. But this is the case by evenness of E! Thus, we can
lift inductively. An lim' argument (using evenness again) shows that this extends to the limit
CP>. O

Note that the functor CRing — Set, R — FGL(R) is corepresentable. More specifically, it is
corepresentable by the Lazard ring L.

Theorem A.4 (Lazard). There is an isomorphism L = Z[ay,az,- - - ].

Can also put everything in a graded setting where we put a formal group law f =} ; bi]-xiyf , put
|x| = |y| = —2 and |b;j| = 2(i 4 j — 1). In Lazard’s theorem then |a;| = 2i (which corepresents
grCRing — Set).

Since MU is complex orientable, there is a map L — MU,.
Theorem A.5 (Quillen). This map L — MU, is an isomorphism.

A different (but actually much easier) result is that complex orientations on E correspond to
maps MU — E in CAlg(hSp).

A.2 Moduli Stack of Formal Groups
To speak about stacks, we better encode automorphisms.

Observation A.6. Suppose that E is complex oriented, then
Te(E @ MU) = E,MU = E,[by, b, b3, - - ].
Now we have two complex orientations
(E@MU)[te] = (E MU = (E @ MU)[tvu]

where ¢ = t + b1t? + byt® + - - - is a change of base of these two coordinates. Setting E = MU we
learn that MU, MU parametrizes universal graded formal group laws and strict automorphisms
of formal group laws. In particular, there are now maps

L
MU «Wy: MU @ MU
The left side corepresents formal group laws while the right side corepresents strict isomor-
phisms of formal group laws. Here, 71, 77 are source and target and y is the identity. One could
continue this diagram.

%7 An equivalent argument is via the cofiber LES on E-cohomology.
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This now allows us to understand the Adams-Novikov spectral sequence. There is an aug-
mented cosimplicial object

—
H ,<7
S— MU «+— MUSMU —— ---

We get MU®*! ¢ Fun(A, Sp). One obtains an associated filtered spectrum and then associated
to it the Adams-Novikov spectral sequence.

In particular, we obtain a diagram

CRing —— sSet ——— §

where the bottom left map is defined as R — HomcRring(7Te MU®*+ R). One can extract a
groupoid out of this since (MU,, MU, MU) is a Hopf algebroid. This is the functor that defines
Mﬁg. It’s the so-called moduli stack of formal groups (with strict isomorphisms). I can’t make

sense of this factorization though;*® more explicitly, what is sSet — Grpd?

Let’s classify formal groups over algebraically closed fields up to isomorphism.

Fact A.7. There is one formal group up to isomorphism to characteristic O (this is in height 0).
There are infinitely many formal group laws up to isomorphism characterized by the height
ne Nzo U {OO}

To understand heights, recall that [p]t =t +r - - - +r t where it’s doing this p times and where
we write F(x,y) = x +r y. Here, we have

f(plx, [ply) = [p1(f (x, v)).

Then, one can write [p]t = g(t”h) such that %(O) # 0 and here / is the height of the formal group
law which is an invariant of the formal group and in fact the only invariant for algebraically
closed fields (A.7).

There was some discussion about MO but this spectrum is chromatically not nearly as interesting
as MU. There was also some interest about [E.,-complex orientations. These are in general hard
to understand and there are relations to power operations and such.?’

B Question Session 1

There were some announcements. For instance, Daniel brought beer and suggested a drinking
game:

Daniel: Every time you hear the word local you have to take a sip.

B.1 Localizations

Gijs: Just wanted to start by briefly saying something about... localizations.

We discussed some basics about Bousfield /reflective localizations which I did not type. But
here are some relevant answers to questions that arose.

28Sorry, I was almost falling asleep, a cracking bunk bed was responsible for a long night.
%My PhD project focuses on such objects...
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@)
(if)
(iii)

(iv)

B.2

WGy
There is an formula for K(n)-localization: L)X ~ ((X ® En)ﬁ,vlw ) .

*On—1
The functor Sp — LJ,;S is the localization with respect to V;,.1 — 0 of Sp.
p P p p

Ryan asked about which localizations are easy to compute. The answer is that they are all
hard. Ryan asked about L, MU. The answer is that this is easy. Let X be an MU-module,
then there is a pullback

LiX —— X[o]']

! |

X[p™11 —— Xlp~L o]

and for L, X is some sort of cube.

Ryan asked if there is some easy example showing that Lgp) # Lr(). Ishan was a bit
flabbergasted. #telescopeconjecture

I asked what'’s the easiest way to see that Lk, is not smashing. Here is Ishan’s answer.

Consider the colimit diagram

S/p — S/p? Q/S)

If you K(1)-localize, you get

SLin)S

and everything is rationally trivial but the last term is a copy of Q,. This is because with

the formula in (i) we have Lg)S = (KU;,\)hZ; with action by Adams operations. Let
t € Z; be a generator. Then, we get a fiber sequence

1—yf

LS KU) KU)

where on homotopy groups the second map is

Z,[BF] — Z,[BF], B — (1 — ).

We compute 1y = Z,, and 771 = Z,. Moreover,

0 p—1tn,

w1 =2Z,/1—4" =
T0n—1 P/( ) {Zp/pvp(n) else.

It goes through (Z,,Z;,--- ,Z/p,0,---,0,Z/p,0,---) where we got Z/p in 2p — 3 and
4p — 5 and so on. This first Z/p gives a;.

How canonical are the v,,?

The answer is that they are really not canonical, but v, is canonical in (p, v1, - - - , v,—1). Moreover,

v,-self maps are asymptotically periodic and one can always find a self-map of the form v

pil

There is a v1-self map S/2® S/ — S/2®S/7.
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B.3 Is there an unstable thick subcategory theorem
Yes, and it’s not so different from the stable one:

Theorem B.1 (Bousfield). Let X, Y € Sfi". Then, (£X) < (2Y) if and only if the following are
satisfied:

(i) typeY < typeX,
(ii) connY < conn X.

So you only need one more condition. The only weird thing is that you need these . Without,
it is an open problem, i.e. figuring out Bousfield classes in Sf™. Here is another open problem:

Problem B.2. What is the lowest connectivity of a finite space of type n?

It is known that it is > n. I asked where this can be found. Gijs said that this is in some paper
from Bousfield... but he doesn’t know where. Maite then retorted that the precise reference can
be found in a survey paper by Gijs himself [Heu20]!

B.4 What's the role of BP?

Have 71, BP = Z(p)[vl, v, - - - ]. This is a smaller version of MU that is maybe more useful in
calculations. It classifies p-typical formal group laws. The p-series has a nice formula, namely

[plt = pt +ro1tf +r OotP e

B.5 Can you say something about Koszul duality?

Gijs asked about which version of Koszul duality he should speak about. We settled on the
following:

Consider (¢, ®). Then, there is an adjunction
aug Bar , aug
Algy °(¢) —— coAlgg °(¢)
1 Cobar 1
where Bar(A — 1) > 1®4 1.
Example B.3. Let ¢ = Mody and R = k[xy,- - -, x,]. Then,
Te(k ®r k) =2 TorR(k, k) = A(oxy, - - -, 0xy).

The duality is that you can go back via Cobar.
This will also feature in Ryan’s talk (10 %).

B.6 How does localization of multiplicative objects work?
The question is essentially about the following result.
Proposition B.4. Let R be an E.-ring and r € 71, R. Then, R[r']is an Eo-ring.

Proof. Consider Modg which is symmetric monoidal with unit R. In a symmetric monoidal co-
category (%, ®) we always have that End(1) is an Ec-ring spectrum. Consider (R/r) C Modg
and consider the localization that kills that object, so we get Modg[r~']. So these are the
modules with the property that there are no maps from R/r. In other words, that’s precisely
the property that multiplication by r is an equivalence. We now observe that this localization
Modr — Modg[r!] is a symmetric monoidal localization using that (R/r) is a thick tensor
ideal. Then, End(1) = R[r']. O
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Remark B.5. This argument was for E-objects. For lower commutativity there are some
relations with the Ore condition. This End(1) is still [E, for [E,-rings R even if Mod(R) is only
E,_1.

We defined KU = ku[B~!] and this gives an E-structure to KU.

Remark* B.6. Another formulation of this is in [HW21, Proposition II1.4]. The formal idea is
essentially that R — R[r1isa ®-idempotent in Modg, so localizing with respect to it is a
symmetric monoidal Bousfield localization.

C Chili Gong Show

On Wednesday evening we had a chili gong show which I think was mainly initiated by Gijs.
The cooking team went to the bazar in the afternoon and fetched a variety of different chilis
and the gist was that the group (everyone voluntarily) ate one of these chilis and then some of
the people gave (not too serious) mathematical gong show talks.

S Mahonld ditf <bis)

y!
Do =7 )/\ ~
Zo &
v
(a|

Figure 5: Aftermath of the chili.

Gijs: We also have some ice-cream, yoghurt and milk... but nothing really helps!

Some people were definitely hit harder than others, as we had also seen from some of the talks...
Unfortunately, I didn’t take notes of any of these talks (sorry!) but let me say that my talk
borrowed a bit of Ryan’s magic.

D Question Session 2

D.1 Hopf Algebroid vs. Stacks
The main example is (MU,, MU, MU) and then you get

Ui S
MU, +— MU,MU —— - --
1R —

One has HopfAlgbr ~ coGrpd(Ring). In other words, the Hopf algebroid (MU,, MU, MU)
corepresents a functor CRing — Grpd. This is really just a linguistic device and the language
of stacks was popularized by Mike’s COCTALOS lectures. It is also useful to describe the
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Landweber exact functor theorem in stacky language (although in practice one still sits down
and tries to work with regular sequences).

One uses the fpqc topology which is like the coarsest topology you can reasonably use.

D.2 Vanishing Curve on ANSS

Recall that MU detects nilpotence by the nilpotence theorem. Recall that the ANSS has signature
E; = H* (Mgg; w®*) = m1.8.

Recall that descendability says that the ANSS has a horizontal vanishing line. Nilpotence says

that we have a vanishing curve of sublinear growth.

Since 77,5 is torsion for @ > 0, non-trivial elements have to be of positive filtration. But then
taking successive multiplications is on a line which eventually overtakes the sublinear curve, so
it becomes 0.

D.3 Non-Existence of Multiplicative Structures on Moore Spectra

The spectrum 5/2 doesn’t even admit a left unital multiplication, so it admits essentially no
multiplicative structure. The reason is that idg/, has order 4. Suppose it has a left unital
multiplication, then we can consider

S/2 —— S5/2®8/2 —— 52
which yields a splitting but this cannot happen because it doesn’t split as S/2 @ £5/2. This can

be checked on H*(—;IF,) for which one only needs the Bockstein and the Cartan formula.

The spectra S/p* are never Eo and there must be a million ways to see this but the usual way
is via power operations. For example, KU /p* would be Eq for which there is some J-ring
structure obstruction. This § has the effect of making elements less p-divisible.

Ryan: Is there any non-trivial element whose cofiber is Eoo?
Gijs: I don’t think so.

Ishan: 0.

Ishan: 1.

Ishan: —1!/

Gijs: I give up.

Ishan says that this seems not to be known.

D.4 Examples of Filtrations and Spectral Sequences

Let’s try to compute M ®g N. What can we do? Take the Postnikov tower: (7>eM) ®+., (T>eN)
whose associated graded is

Y2 TeM Ry r g L°Te N =2 Tor 1, R(7Te M, 7Te N).

This converges to me(M ®r N).

Bhavna asked if the Adams spectral sequence can come from a Postnikov filtration. Ishan
answers that the Postnikov tower gives the S-based Adams spectral sequence.

For the Grothendieck spectral sequence consider
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L(GoF)

/\

D(e/) —+ D(B) —= D(?).

Take LG(T>+LF), then its associated graded is LG(7, LF) which converges to L(G o F).

D.5 Operads

The question is about naturally appearing operads not in spaces. Gijs’ favourite example is the
spectral Lie operad.

(i) Goodwillie derivatives of the identity functor on S.. Recall that rationally S, can be
modelled by dg Lie algebras by Quillen. This phenomenon always appears by spectrally
enriching.

(ii) Koszul Duality: There is an equivalence Lie ~ Bar(Comm)".*"

(iii) One can explicitly describe Lie(n) ~ (Part™(n)°)" where Part® is the partition poset of
{1, cee, n}.
There is a functor TAQ : CAlg®"8(%) — % such that TAQ"(R) is naturally a spectral Lie algebra.
That’s why Lie algebras are important in deformation theory.

I inquired about what happens if we replace Part by the linear partition complex. Gijs said that
for the Tits building and the linear partition complex this will not be an operad.

I also asked about examples other than the Lie operad. There are many operads, e.g. there
is something called the gravity operad. But in Gijs” honest (politically correct opinion) his
library of operads are just the [E,-operad and the Lie operad. Gijs comments that some French
mathematicians care about operads on chain complexes. I will not say more.

D.6 Fancy Way of E.-Structure on E,

Here is a quick way to see why an Es-structure on E, exists. The construction is due to Ishan,
Robert and Dustin. Consider

Sp <~ SynSien —2CT IndCoh(My,)

We will try to construct an E-object in Synyy7'. Consider a stack
Algy (Sp) — S, R — Fun®(Syn,,;, Modg).

Look at the connective cover of the descent spectral sequence on MUP via

—
T>e MUP +— = MUP®MUP —— - -

So this gives rise to a stack which we call /./\\/t/fg. There is some line bundle $%~2 on the stack
and some T, and moreover, ./A\/l/é”/r = ./\/lfgg”. Now, ./\/lf:g” = Mfgg”/(p, vy, ,0,_1). Consider a
formal group G : SpeclF, — ./\/lf:g”. The main thing to observe is that this is formally étale. This
is because Mgg” is very much like the classifying stack of a group, and so this is very much like
a Galois extension and those are formally étale.

If there is some deformation of Mg", then it can always be lifted to a deformation of Spec F,.
There is a pullback

3There is an equivalence Bar(E¥E,) ~ s"E)/, so we don’t gain anything new for [E,-operads with n < co.
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SpecF, ¢ M
r _

i [

~
A i a ay_1
SpecR —— Mfg/(rl,pﬂo,vll,- 0

Take the colimit of this stack thing on therightasi,ag,- - - ,a,-1 — o0. Then, the deformation
on the left is Spec >4 E,,. We get W(IF)[v1, - - -, v,—1][B] and without 7, p this is without the
B and the W. With p we get W. With T, we also get B. So this recovers connective Morava
K-theory.

Taking some global equivariant version of Synyy(}', one can get some p-divisible group shenani-

gans.

D.7 Generalized Chromatic Homotopy Theory

More precisely, the question is about chromatic homotopy theory when adding words like
equivariant, motivic, synthetic, and so on.

Most work has been done in the equivariant setting. An essential part of the chromatic story
is the thick subcategory theorem which was mostly dealt with by Balmer-Sanders for finite
groups who described the Balmer spectrum as a set and some parts of the topology but not
all. Others later resolved the question about the topology for finite abelian groups and so on.
The finite group case is still open... or is it? Ishan interrupted and asked whether unpublished
work counts. The finite group case for the thick subcategory theorem has been resolved in
unpublished work by Ishan, Robert, Markus and Lennart.

About motivic and synthetic... Ishan, Robert and Piotr have unpublished work on the motivic
thick subcategory theorem and periodicity theorem via some the cellular synthetic categories

A )"
(synsic?)) ~ (SHIOM)'.
In particular, the (cellular) motivic and synthetic questions are dealt with at the same time.

D.8 Less Serious Questions

Someone asked whether Gijs and Ishan could answer some of the less serious questions.
Gijs: ...They are on the level of... "'What's the best time to get married?’” "How do you stay happy?’

I'm still waiting for my answers.

E Non-Mathematical Parts

Certainly, I wasn’t part of every activity at Talbot but here are some of the more global events.

E.1 Cooking

As per Talbot tradition, we split into cooking (and cleaning) teams to take turns making dinner.
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Figure 6: Dinner Teams

A lot of yummy dishes were created and the last day was rounded off by a special occassion:
4th of July. The Americans prepared a barbeque evening!

Figure 7: The American evening.

Team USA delivered.

E.2 Fun in the Water

Some of us discovered kayaks on the first day, and so I believe it was then that the idea was
born that excursion day would be spent on the water. We went kayaking and canoeing!
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Figure 8: Talbot group on the middle of the waters.

There were no casualities.

E.3 Karaoke Night

The entire event was brought to an end with a final karaoke night. I don’t have any fitting
pictures but this certainly seems like a fitting end to an amazing week.
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