The Equivariant Slice Spectral Sequence

Q1 ZHU
December 31, 2025

Abstract

These are my TeX’d notes of Bert Guillou’s eCHT minicourse on the equivariant slice
spectral sequence. You can find the lectures, exercise sheets, and Bert’s notes on his website
https://www.ms.uky.edu/ guillou/echtSlices/SlicesMinicourse.html.

I don’t entirely follow Bert’s notation and left out some review on equivariant homotopy
theory. Most exercises from the course along with their solutions also feature in these notes.
I'm thankful to Bert for catching one typo. Comments are very welcome!
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Qi Zhu The Equivariant Slice Spectral Sequence

1 Introduction

Bert gave a longer review on equivariant homotopy theory, which I omitted in these notes.

1.1 Short Mackey Functor Review

Recall that for X € Sp® one obtains a Mackey functor 77,,(X) which has restriction and transfer
maps along with an action of WoH = NgH/H = Autg(G/H) on rti(X).!

Example 1.1.1. We get the Burnside ring 770(S¢) = A. For G = C, this is depicted by:

There will be two Mackey functor constructions relevant to us:

Construction 1.1.2. There are two functors F, Q : Modz[g; — Mack(G) which on objects are
given by
F(M)(H) = M" and Q(M)(H) = M/H.

The restriction for F is the inclusion map and the transfer for Q is the quotient map. We will
also write F(M) = M

Example 1.1.3.
(i) We get F(Z) = Z given by

Z
1|2
Z
(ii) We get that IF(Z) is concentrated in the bottom group with the sign action.

1.2 Atiyah’s Real K-Theory

One can use that Cy-action on C to promote KU € Sp and obtain KUg € Sp®. We have
KU% ~ KU and KU ~ KO.

Remark 1.2.1.

(i) By classical Bott periodicity we get a 2-periodic KU and an 8-periodic KU%. Thus,
tu18 KUR = 1, KUR.

(ii) There is also a Real Bott periodicity X KU ~ KUR.
Problem 1.2.2. The Real Bott periodicity of KUR is not detected in the Postnikov filtration.
Response. Define a new filtration for C,-spectra.
1. It restricts to the Postnikov filtration after applying ResS? : Sp© — Sp.

2. It interacts well with Xf : SpC2 — SpCZ, written as P]:TZZ(ZPX) ~ ¥FP!(X). This implies
the compatibility with Real Bott periodicity.

O

1We mod out the H-action on X, so it should have some residual G /H-action. But this doesn’t make sense in
general, as H need not be normal, so G/H need not be a group. The normalizer fixes this deficiency.
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1.3 The (Regular) Slice Filtration (G = (5)

Want fiber sequences
P, X — X —— prlx
where P, is > n and P" 1is < n — 1. Also want

PZ

Y k
k+1X —_— P].X —_— PjX

for j < k < {. For example

k+1 k+1 k
P — P]. X — P] X
giving a (k 4 1)-slice.

The theory was pioneered by Dugger for C, (and some motivic people afterwards) until HHR
studied this more thoroughly and in greater generality. There is a slight variant by Ullman from
his thesis which is a bit simpler and the definition we will use.

Definition 1.3.1. Let 7, C Sp® denote the localizing subcategory generated by
o Sk for 2k > n,
o Ind$? Sk fork > n.
We write X > n for X € 7>, and say that X is slice n-connective in that case.
Example 1.3.2. It turns out that 7>9 ~ Spgz0 and T>1 ~ Sp%.

Definition 1.3.3. Wesay X < nor X <n —1if [W,X] =0 forall W € 7>,. In that case, we say
that X is slice (n — 1)-coconnective.

Construction 1.3.4. We obtain a Bousfield localization P": Sp® — SpC into 7<,. Furthermore,
let
Pyi1(X) =fib(X — P"(X)) and P/(X)= PP"X.

It takes some work to show P, 1 X > n+1.
Proposition 1.3.5 (HHR).

(i) P)X ~ HmoX,

(i) P/7(5PX) ~ £PPIX,

(iii) P} X ~ Z'H(m; X/ ker res?),

(iv) If X =+ Y — Zis a fiber sequence with X > n+1and Z < n, then X ~ P,;Y and
Z ~ P"Y.

In (iii) we force the restrictions to be injective and in (iv) the slogan is that if something looks
like a slice tower, then it is a slice tower!

Exercise 1.3.6. Compute Pllslcz.

Proof. We use Proposition 1.3.5(iii). Note that Els}?z = 1mSc, = A(Cy) is the Burnside Mackey functor.

On the other hand, we must mod out the kernel of the restriction map which is (1 — o) C A(Cy). So we
are left with Z. Thus, PllS}?z ~ YHZ. O
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1.4 Back to Atiyah’s Real K-Theory

The structure maps of KUR are

KU ~ KO
C\LTT
KUj ~ KU

given by complexification and realification. Let us try to compute the slices of KUR. This was
studied by Dugger [Dug05] but there is also a C4-version by HHR [HHR17].

¢ Taking 7y yields o KUR = Z. Thus, Pg KURr ~ HZ by Proposition 1.3.5(i).

¢ Taking rr; yields

z)2

0
which Bert calls g for ‘geometric’ and HHR call B(1, 0). Thus, Pl1 KUR ~ Z'Hg/ kerres ~ *
by Proposition 1.3.5(iii).

* We can compute P KUg ~ ¥ P~ KUg ~ X P) KUR ~ £PHZ by Proposition 1.3.5(ii)
and Real Bott periodicity.

¢ A similar computation shows Pg KUR ~ %f P%Z_P KU ~ X° P1l KUR ~ .
We deduce:

YIPHZ 2|n,

Lemma 1.4.1. Letn € Z. Then, P} KUR ~ { .
* 24n.

Because it is a smaller model, let us focus on the connective cover kug — KUR which has
kup ~ ku and kul(f{2 ~ ko. It’s a fact that the connective cover is given by P,.

Y:PHZ 2| nn>0,

Corollary 1.4.2. Let n € Z. Then, Pj/kur ~ {
* else.

Construction 1.4.3. From the slice filtration

X PiX —— PX
we get a spectral sequence
EY' = m sP{X = X

with differential d,: m, PttX — En_lpttﬂjllX. This is the slice spectral sequence.

The Slice SS for kug is depicted below:
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&70“5 Reﬁpl l’(’d’t'\eoy
The slice ss ¥or kIR

(kR)" = ko

Figure 1: The Ez-page for kup.

The E>-page looks the same, just without the differentials. We will argue that this is the spectral
sequence throughout the minicourse. Note:

¢ For example, this bottom left antidiagonal consisting of g and Z° is . PzzkuIR = .2 HZ.
We will compute these in the next lecture.

¢ (lassically, it is known that 773 KO = 0, so this third g from the bottom must be killed. It
can only be hit by the third Z in the bottom row, so we obtain a differential.

¢ By multiplicativity this differential propagates.

¢ (lassical Bott periodicity makes the picture repeat.

So we get the E4 = E-page:

The slice ss For kIR

Figure 2: The E4-page for kug.

As so often, this is not the end of a spectral sequence. We have a horizontal vanishing line and
some extension problems are left (those are the orange lines).
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Exercise 1.4.4. Solve the extension problem to see that ykug is given by the Mackey functor

Z)2
o]
ZU'

This is also known as QZ°.
Proof. Indeed, the extension problem is a short exact sequence
0 — g —— mkur — Z —— 0

which written out is

0 Z)2 m52kug — 0 —— 0
0 0 skug z° 0

so we can immediately read off the groups at each level. Moreover, the only possibility for the restriction
map is 0. So it remains to see if the transfer map is non-trivial. For this consider C,/e4 — S° — S and
X € Sp2. Tensoring yields

Cfes X — X —— 70X

and applying (—)%2 then

X¢ XC2 (ZO’)CZ
so applying 71, we get an exact sequence

C
t
(X)) — Ty

2(X) —— mRA(ZX).
We plug in X = kup and n = 2; we are interested in tr$2. On the other hand,
m52(27kug) & 752 (Qkug) & 7152 (kug) 2 73(ko) 2 0

by Bott periodicity. So tr$? is the unique non-trivial map. O

2 Bredon Homology Computations

2.1 Bredon Homology

Recall that we arrived at the slice spectral sequence EnPfkuIR = EnZé*’HZ = m,kup last time
(Corollary 1.4.2). So we need to compute these slices which are given by Bredon homology.

Definition 2.1.1. Let X € Sf and M € Mack(G). Then, EH(X; M) = m,(X ® HM) is Bredon
homology.

Example 2.1.2. Last time for G = C; we claimed that

z° n=2,
m(XPFHZ) = < g n=1,
0 else.

Let us verify this now.
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Proof. Since S ~ ST AS7 and S? only shifts 7, it suffices to understand ~X“HZ. To compute
this we use the C,-CW structure on S” which can be described as the cofiber sequence

Cos A SO S0 s,

i.e. attach a single free Cy-cell. Tensoring with HZ yields
G+ ®HZ —— HZ —— S"®HZ
and the last term is the one we want to understand! We note the following:
(i) Always, Co; ® X ~ IndS? Res$* X.

(ii) We obtain 7r,(Coy ® X) = ind$? 71, (Res$? X), an induced Mackey functor.? for M € Ab
the Mackey functor ind$? M is given by

1+vﬁv

Z[C]®zM
Applying 7, to the aforementioned cofiber sequence thus yields a LES
0 —— H(S%Z) —— ind?Z —— Z —— Hy(S;Z) — 0.
So we need to compute the kernel and cokernel of ind$? Z — Z which is:

— )] —— Z— -

2

The bottom map sends 1,y — 1, so by commutativity of the diagram, the top arrow is forced to
be 2.% Just compute kernel and cokernel levelwise!

0 7z -7 Z)2
1+7lT %Tz
7° =7{1—v} — Z[Cy] Z 0
This confirms my2"HZ = g and m12"HZ = Z°. O

Exercise 2.1.3. Compute 1}, >2"*HZ.

Proof. First of all, we note 2Hg ~ Hg and 2"HZ" ~ YHZ via exactly the same computational methods
as above. This yields
YHg ~x'Hg and XPHZ’ ~ X’HZ.

We use the fiber sequence”

¥?He,Z° — YPHe,Z — E'Hg,g.

2Gee also [Zen18, Definition 2.8].

3Note that the top map agrees with this transfer map on the right. This is not a coincidence and always happens
in these sorts of maps from the induced Mackey functor by exactly this argument.

4Here is an error it made. With the above we have a fiber sequence X’HZ’ — ¥’HZ — X°Hg and now it
sounds like we can just apply Q27 but the resulting sequence is not a fiber sequence, as is checked on 77y. The mistake
is probably that the previous sequence is not given by applying X7 to a fiber sequence but rather arises in a more
complicated fashion.
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Applying 2F yields
S*He,Z ~ ¥*"PHc,Z° —— Y¥H,Z —— E'"PHe,g ~ £?He, g
This gives 1, = g and 714 = Z. One can now go on and obtains
Z4+(n_2)pHCZZ —— Y"Hc,Z — Z'Hg,

so we can proceed by induction. With a proper analysis of these terms we obtain

~ {ZU z/fn’

En:En—«—Z:"':EnjLzL%J:gr@n: 7 2(n

The other terms are 0. O

We chose the kugr, so we obtained a first quadrant spectral sequence. If were to work with
KUg, then we’d also get the third quadrant, and the slices come from negative p-suspensions of
Bredon homology. This motivates the following computation.

Example 2.1.4. Let us compute ¥ ~“HZ. The cofiber sequence Cp — S — S dualizes to

S s Cas

in Sp© via self-dualizability of the orbits. Tensoring by HZ yields

L HZ HZ C,y ®HZ
and thus we obtain an exact sequence
L HZ —— Z —— ind?Z —— g _%Z

This comes out to be

z 1z
bl
0——Z T Z[C) —— Z[C))Z =77
Thus, ¥ ""HZ ~ ¥ 'HZ".
You can further desuspend and keep going with the computation.
Exercise 2.1.5. Compute X "H¢,Z.

Proof. We have already computed ¥ PHZ ~ ¥ ~2HZ" above (Example 2.1.4). The next step is to compute
Y HZ ~ ¥ 3y "HZC. By tensoring with S77 — S9 — C,,. we we have the fiber sequence

Z"HZ° HZ" Coy ®HZ”
This leaves us with the diagram

0

N i

0—— 27 T Z[C] — ZIG)/Z{1 -} =Z
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where the bottom map is essentially because HZ” — Co; ® HZ” = []c, HZ hits every factor com-
pletely, so on the trivial component it must be 1 and by Cy-equivariance, we must get —y. We have
Z[Cy]/Z{1 — v} = Z because the Cy-action acts by v - 1 = 7 = 1 in this quotient. Commutativity of the
right square gives rise to those maps as depiced where 2 = 1 + «. Thus, ¥ "7HZ’ ~ ¥~ 'HZ*.

Next, we need to compute £ ~3*HZ ~ £ £ 7HZ*. An analogous fiber sequence gives rise to

0 7z 2,7 z/2

2| I

0—Z g Z[C)] — Z[G)/Z{1 +~} =27

and so we identify the right-most term as QZ°. Thus, Z~%HZ ~ £ °HQZ.
Next, we need to compute L% HZ ~ £-7£""HQZ’. An analogous fiber sequence gives rise to
72— 72 —2 7 !

057 1+7H 2ﬁ1

Z[G] — ZIG)/Z{1 -~} =Z

0

1=y
so we get a fiber sequence
Hg —— L "HQZ’ —— L 'HZ*

The next step would mostly consist of applying ~.77 again. For the first term we use ¥~“Hg ~ Hg as
suggested in the proof of Exercise 2.1.3. The third term we already computed above. So at this point we
have all ingredients to induct. There are two cases:

* nodd: mp, = QZ% and Moy 2 = Mop—4 =+ = M3 =,
* neven: My, = Z"and oy 1 = Mop-—3 =+ = M43 = 6.
We are finally done. OJ

Example 2.1.6. Now consider G = C3. We have pc, = 1 ® A where A is the 2-dimensional
rotation representation. Again, the CW-structure induces a cofiber sequence

Csy s S~

where 5™ = CJ is the spoke sphere or also the eggbeater (first suggested by Clover May). Note
that the notation is a bit misleading since S~ is not a representation sphere. Attaching another
cells yields the cofiber sequence

Cy4 A S! s~ Sh,

Tensor with HZ and you can compute as before. Essentially the same computation as in
Example 2.1.2 yields information about S”. Then, you do one more computation for S*. We
learn

a3 1’120, g3 1’120,
(S Q@HZ) = { I n=1, and m(S*®HZ)~={0 n=1,
0 nIZ Z 1’1:2

where g3 is the Mackey functor with Z /3 fixed at the top, also called B(1,0) in HHR notation
and I = ker(Z[C3] — Z).

Example 2.1.7. Now G = C4. The difference to C; and Cjs is that 4 is not a prime. We obtain a
decomposition pc, = 1@ ¢ © A where
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* 0 is the sign representation of C4/C, = C; and essentially pulled back along the quotient
map.

* A is the 2-dimensional rotation representation with rotation by 90°.

An approach to compute H.(5";Z) by attaching cells as before works here as well but an
alternative approach is via the cofiber sequence

S(A)+ SO st
where S(A) = SL, = C4 U (C4 x e!). Thinking about the attaching map we sort of attach a point
with a 90°-rotated one, i.e. C.(S(1)) = (indeC4 1_—7> indeC4L Z) which works out to be

z —% .7

of]

C4/C2] 1= Z C4/C2

wel] ]

C4] 1—r)/> Z C4

Computing kernel and cokernel yields

Z Z Z Z
1lT2 1+7H 1+7lT zﬂl
Z —— Z[Cy/Ca] -1-7» Z[Cy/C)] —— Z

ool el ]

7 —— 20 ——— 2[G] —— Z

The left object is Z and the right one is Z*, the dual constant Mackey functor. This computes

Z =1,
H,(S(A) = {Z* T,

Thus, we can now run the LES for
S(\)+ ®@HZ —— HZ —— S*@HZ

to compute
Z n=2,
ﬂn(sA) =40 n=1,
B(2,0) n=0

where B(2,0) is the Mackey functor

Z/4

i

z)2
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One could write this as the cofiber sequence from the Postnikov filtration, namely as
YHZ —— Y*HZ —— H(B(2,0)).

See also [HHR17, Figure 6]. We're still on the way to compute the homology of 5. So now
apply X7 to obtain

Y2 HZ — TMYHZ — S°H(B(2,0)).

See also [HHR17, Figure 3]. These are now not so bad and it turns out that the right term has
79, 711 while the left term has 715, 713, so they don’t interact.

Here is one idea to compute X7H¢,Z. Consider the Mackey functor diagram

M(Cy)

Il

M(C)

Il

M(e)

along with the Weyl group actions. One can either chop off the bottom or restrict to the bottom
part but lose some of the Weyl group action. In diagrams, this comes from

Mack(Cy/Cp) Sp&/©
q{ THCZ
Mack(Cy) Sp“
resgél |Resty
Mack(Cy) SpCZ

which has a spectral incarnation. In the setting g* : Sp¢/N = SpC : (—)N there is the projection
formula (¢*X @ V)N ~ X @ YN in Sp®/N. Thus, we compute’

(8" @ He,Z)® ~ $” @ H, Z
which we already computed (Example 2.1.2), namely it has 711 = Z7 and 19 = g. Moreover,

Res™ 27He,Z ~ ¥'He, Z.

G
We deduce
Z/)2
mo(X"He,Z) = g=B(2,1) =40
0

since there are no interactions. Moreover, 771(X2“Hc,Z) is

0

79
1lT2
79

51 think one proves (Hc,Z)? ~ Hc,Z by computing 7.

10
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where we know the middle group with Cy-action from the fixed points, and we know the
bottom group (without the C;-action) plus the maps from the restriction. In particular, the
Co-action on the bottom must make it Z7, so it the bottom part is Co-equivariant.

2.2 The (Regular) Slice Filtration
We don’t have to change so much from Section 1.3; it’s basically all the same.
Definition 2.2.1.

(i) Let >, C SpG denote the full localizing subcategory containing Indf{ Sken for H < G and
k > 0 with k|H| > n.

(i) We define X <n —1if[W,X] =0forall W € 7>.
Example 2.2.2. One can check 7>g =~ Spgo.
We get similar properties but add one useful one.
Proposition 2.2.3.

(i) There is an equivalence P{X ~ HrmX.

(ii) There is an equivalence PllX ~ ¥H(mmy X/ kerres).

(iii) There is an equivalence P;E'Gﬁ'(zp X) =~ ZPPH(X).

(iv) There is an equivalence P} Res% X ~ Res$ PlX.

(v) There is an equivalence ¢ P} X ~ Pl:’||Gc||go*GX

The last part is a result from Hill’s primer and ¢ is the geometric inflation functor.

Example 2.2.4. Let G = C;. Then, XHg =~ ¢ 2HIF, as g is concentrated in the top degree. So it
is a 2-slice.

This result from Hill is very useful in general since it is hard to tell when something is an n-slice.
Right now, this result is only stated by geometrically inflating from the trivial group. This can
be generalized.

Construction 2.2.5. Let N < G. Then, there exists a family F[N] such that its universal space
satisfies
@ H >N,

* else.

(EFINDH ~ {

We obtain a cofiber sequence

EF[N]+ S0 EF[N]

which allows us to define two functors
ON(X) = (EFIN]@ X)N and ¢}(2) = EFIN|®q*Z

where g : G — G/N. This gives an adjunction

SGLN>5G/N
Pe it Sp
N

11
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Exercise 2.2.6. Let X € Sp“*. Then, ®%4X ~ §C+/2XC2,

Proof. Recall that (—)2 is the right adjoint of p* = Inﬂgi Jc, for p = C4 = C4/Cy, so it has a residual

Cy4/Cy-action. Anyway, let P denote the family of proper subgroups of G. Then,

Cy/Co

HCs/C2xCo ~ (EPC4/C2+ ® XCz)Cz ~ ((p*EPC4/C2+ ® X)C2> ~ (p*EPC4/C2+ ® X)C4.

So it suffices to show p*EP 4/ Cot = EPCﬁ. But indeed,

* =, H
(p*EPc,/c, )" ~ EPL

_Js* H=¢,
Cy/Co+ —

* else
which characterizes EPC4+. Here, we used that for p : G — G/K one has (p*X)H ~ XPH as the left side
is explicitly given by

OrbZ 5 OrbF = S, H s pH > XPH. O

Proposition 2.2.7 (Hill-Ullman). Let N < G. Then, ¢}, P'X ~ P;]'I\I;]“QO}‘VX.

Example 2.2.8. Let G = Cy.

(i) Let N = C,. We have seen that XHc,Z is a 1-slice (Proposition 1.3.5(iii)). Thus, ¢¢, XHc,Z
is a 2-slice which is explicitly 'H¢, M for the Mackey functor M given by

1|2

Z

0

(i) Let N = C4. Again, we use that £H,Z is a 1-slice. Thus, ¢, 2HZ is a 4-slice given by
YHg,N for the Mackey functor N given by Z concentrated in the top group.

3 More about Slice Towers

3.1 Examples: ZVH;Z
Exercise 3.1.1. Let 0 < n < 6. Then, X"H¢,Z is an n-slice.

Proof. The strategy is to use Proposition 1.3.5(i) — (iii) why delooping a few times and then checking
whether we get a 0-slice or a 1-slice which is an explicit algebraic statement about EM-spectra. The main
work was done in our computations (Exercise 2.1.5).

¢ n = 0: Certainly, HZ is a 0-slice by Proposition 1.3.5(i).

* n = 1: Also, XHZ is a 1-slice by Proposition 1.3.5(iii).

e 5 = 2: This is because X2 PHZ ~ HZY is a O-slice.

e 1 = 3: This is because X3P ~ YHZ is a 1-slice.

n = 4: This is because 4% ~ HZ* is a 0-slice.

n = 5: This is because X°~2% ~ YHZ* is a 1-slice.

n = 6: This is because X0 3*HZ ~ HQZY is a 0-slice.

Yay. O

12
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It turns out that 0 < n < 6 is the precise range where this phenomenon happens. We will take
some examples and show that they are not slices. Our strategy is to desuspend enough to ask if
itis a 0- or 1-slice and in attempting to see this, we will obtain slice fiber sequences.

Example 3.1.2. Consider ¥’H¢,Z. By Proposition 1.3.5(ii) it is equivalent to ask if it is the
3p-suspension of some 1-slice, i.e. if Z7HCZZ ~ ZLB’PHHC2 M where M is some Mackey functor
with injective restriction maps (Proposition 1.3.5(iii)).

Equivalently, ¥/ 3%H¢,Z ~ Y'H¢, QZY using Exercise 2.1.5. But QZ is the Mackey functor

z)2
i
ZU'

which is evidently not a 1-slice. The top group is the obstruction to being a 1-slice and killing it
off leads to a SES

0 g , QZ° z° 0.

It gives rise to a cofiber sequence
Y'Hg —— XHQZ’ —— X'HZ’
which again yields
YHg ~ =% Hg —— Y'HZ —— Z1PHZC

which is the slice fiber sequence of £”"HZ by Proposition 1.3.5(iv). Indeed, the left term first
of all uses an equivalence from Exercise 2.1.3. The left term is Z*Hg ~ q)ézZ‘lH]Fz which is an
8-slice by Proposition 2.2.7.° The right term is a 7-slice because we bumped up the 1-slice HZ
by X3¢,

Let’s use this to study SliceSS(X’H¢,Z). Using the computation from Exercise 2.1.3 we arrive at
the picture

Slice 5,27 W, Z

Z-—

Figure 3: The slice spectral sequence for ¥’H¢, Z.

The left g is the 8-slice and the right two terms are the 7-slice. Since we know YHZ, we know
that these g’s must be killed, and the only chance for this is via the orange differential that’s
drawn in.

®See also Example 2.2.4.

13
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Example 3.1.3. Consider 2>Hc,Z. Is this a 2-slice? Apply ., so by Proposition 1.3.5(ii) we
are equivalently asking if ©°"'H¢,Z is a 0-slice. We have seen (Example 2.1.2) that it sits in a
slice fiber sequence

HCZZU — ZUﬁlHCZZ — ZleCZQ

where the left is a 0-slice and the right is a (—2)-slice. So we already answered that the object in
question is not a 0-slice. Applying 2 again gives

Y?He,Z ~ ¥PH,Z° —— Y*He,Z —— Y°Hc,g ~ He,g

using the equivalences from Exercise 2.1.3. So SliceSS(£* Hc,Z) is the boring already collapsed
picture

Z

Figure 4: The slice spectral sequence for 2 Hc, Z.

Observe also that the slices are Eilenberg MacLane objects, so the slice filtration for 22H, Z is
the Postnikov filtration for " H¢, Z

These examples show that Xf just shifts things around in the filtration to where they are easy to
understand, namely the 0- and 1-slices. This leaves us with Eilenberg-MacLane computations.
That’s a useful technique in general.

Example 3.1.4. Consider Z‘/\HQZ.

e We know that the 2-slice is non-trivial, as detected by Res$* via |A| = 2.
¢ Even better, consider Resgi Y'Hc,Z ~ £2"Hc,Z which has 0-slices and 2-slices.

We may compute
P{Y"H¢,Z ~ He, o2 He, Z ~ Hc, B(2,0)

by Proposition 2.2.3 and Example 2.1.7. Even more so, in Example 2.1.7 we had found
Py ~¥*Hc,Z — ¥*Hc,Z — Hc,B(2,0) ~ P).

We claim that ZZHC4Z is a 2-slice.
e [tis > 2: Indeed, it is 2-connective (and 2 > 0), so it is slice 2-connective.

e Jtis < 2: Recall that we need to show

C
[Ind% SkPH,ZZHC4Z] N

14
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for H < C4 and k|H| > 2. By adjunction, this is an H-equivariant question. But now note
that Resgi ZZHC4Z ~ ZzHCZZ is a 2-slice (Exercise 3.1.1). We are left with the case H = Cj.
For this, we have to know

[S*, 22H, Z]% = 7ty (X" Hc,Z) = 0.
This can be done and is e.g. in [HHR17, Figure 3].
So the Postnikov filtration for Z)‘HQZ is the slice filtration.

One learning of the above example should be that coconnectivity is often a Bredon homology
computation.

Exercise 3.1.5. Show that X"H¢,Z is an n-slice for 0 < n < 4.

Proof. For n = 0,1 this is clear by Proposition 2.2.3. For n = 2, 3,4 we proceed as above (Example 3.1.4).
Everything is the same and we need to read off that n,m(Z_kPHQ}Z) ~ 0 for m = 2,3,4. Look at the
following picture.

16 . o N ]
. . 0
11 11 e s o ®
. . .
12 N N . o e o |
. .
° | e o ° o
. . .
8 [¢) ° [¢) ° [¢)
. . .
° N [e) ° o °
. . .
4 o ° o ° o °
. . .
D o D o o o
e L] L]
04 A_ | 4 N_| | N 0 O 0 0 O 0 O
o) ® o) ® o)
0 0
o ° o N °
—4 . °
° o ° o
. . .
e | © . )
-8 . .
o o | o °
. .
o s .
—12/e ° °
° o °
. .
N ° °
-16

—24 -20 —-16 —-12 -8 —4 0 4 8 12 16 20 24
Ficure 3. The Mackey functor slice spectral sequence for

V ez X"P+HZ. The symbols are defined in Table [2| The Mackey

functor at position (4n —s,8) 18 w4, HZ = Hy,_ ,S"F*.

Figure 5: This is [HHR17, Figure 3].

Whatever all these symbols mean, our desired groups are the vertical lines at —1, —2, —3. We read off
that these vanish. O

Exercise 3.1.6. There is a slice sequence
P ~¥?Hc,g — X°Hc,Z —— T¥T™H,Z ~ P?.

Proof. First, we note that the diagram

15
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0 V4 Z Z)2 0
A
0 z—-2z 0 0
Bk ]
0 7 —Z 0 0
describes a SES of Mackey functors
0 — Z(2,1) z g 0

where Z(2, 1) is this Mackey functor on the left. Thus, we obtain a fiber sequence
22+20Hc4g SN z3+20HC4z(2, 1) —— Z3+2(7Hc4z

By inflating up the Cy-equivalence 2“H¢,g ~ Hc, g from Exercise 2.1.3 we also see that the left side is
¥?Hc, g. Moreover, ¥*"2"Hc, Z ~ Hc, Z(2,1) by [HHR17, Figure 6].

4 o o [¢] O 4 . . O
3 o o o) 3 . e O
2 o o 2 . O
1 o O 1 O
0 O 0 0

-1 4 -1 =)

-2 40 -2 N

-3 40 S -3 N

—4 4 0 o o —4 NI

-5 4 0 o o o -5 NI .

—6|4|0 o o o o —6|/N ® .
-12 -10 -8 -6 -4 -2 0 2 4 6 8 -6 -4 -2 0 2 4

FIGURE 6. Charts for H z~SmA and H,5™°. The horizontal coordi-
nates are i and the vertical ones are m and n. S™” is on the left
and S™ is on the right.

Figure 6: This is [HHR17, Figure 6].

This yields the desired fiber sequence. We still need to show that it is a slice fiber sequence. The left side
is quick via Proposition 2.2.3(v), as ZZHC4 g~ (p}}4 Y2HIF,. Now onto the right side. We must equivalently

show that £2t7~*H¢, Z is a 1-slice. We do so by explicitly computing its homotopy groups. Consider
the cofiber sequence

Cy/Coy —— S¥ —— 57
which is an inflated version of the standard cofiber sequence for C,. So we obtain a cofiber sequence
C4/Cry ® L *He,Z —— L *HZ —— ¥’ "HZ

We can read off [HHR17, Figure 6] that Y ~AHZ ~ ¥ 2HZ*. Moreover, the homotopy Mackey functor of
the left object is computed by a lift Mackey functor [Zen18, Definition 2.8, p. 44]. Namely, we have

70.(Ca/Cay ® T MHc, Z)(Ca/Ca) = m(E H, Z)(Ca/Ca % Ca/Cy) = 72X
7(Ca/Cas @XM, Z)(Ca/C) 2 (5 He, Z)(C4/Ca % Cy /o) 22 22X & 2 X
7(Cs/Cas @ T H, Z)(Ca/e) = 1. (S H, Z)(C4/Ca x Cafe) = n?X = i X & mic* X

where we use Cy/Cy x C4/Cp = C4 11 Cy/Cy and Cy/Cy x Cyq/e = Cyq/e 11 Cy/e. Using the LES allows us
to arrive at

16
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1

0 Z Z
1 v ol
z{(1,-1)=Z — Z®Z —v~+>Z — 0

ik [ ]

Z(,-1)=Z —— Z>Z — 7Z —— 0
where the left term is m 1(Cy4/Coy ® Z’/\HQZ). This shows that Z”‘T’)‘qu is a 1-slice. O

Proposition 3.1.7 (Hill-Yarnall). Let X € Sp°. Then, X > n if and only if ®7 X is ﬁ—connective
forall H < G.

Here, ‘”ﬁ-connective means “”ﬁﬂ -connective. There is also a version for genuine fixed points

but that one unfortunately does not work for n < 0.
Example 3.1.8. Let G = C,.

(i) We get X > 1 if and only if Res$? X is 1-connective and ®©X is I-connective, i.e. 1-
connective.

(ii) We get X > 2 if and only if Res$? X is 2-connective and ®©2X is 1-connective.
Example 3.1.9. Let G = C4. Then, X > —3 if and only if

Res$* X > 3, ®©X > —g, X > —Z.

Let’s try specific examples for X.

Example 3.1.10. Consider X'Hc,g. Then, Res$? X'He, g =~ * is n-connective for all n and
22 He, g ~ X1dCH(, g ~ ZTHF,

using symmetric monoidality of ®© and it being inverse to taking geometric spectra.” This is
1-connective. Altogether, Z'Hc,g > 2 by Example 3.1.8(ii).

Example 3.1.11. Consider Z_EHQZ ~ 37 _AHC4Z. We compute

Rest* X7 "He,Z ~ 2 *HZ > -3,
2y " MHe, Z ~ Y 'O%H,Z > 1,
QY " H, Z ~ ®Y“H,Z > 0
where we use symmetric monoidality of geometric fixed points and the 7! in the second
line comes from —o as it is really pulled back along C4/C, — C,. That the geometric fixed

points of connective spectra is connective for example follows from the converse of Hill-Yarnall
(Proposition 3.1.7). We deduce Z_‘T_)‘HC4Z > —3 by Example 3.1.9.

7 Alternatively, note that a : Hc,g — Z7Hc, g is an equivalence, as seen in Exercise 2.1.3. Thus,

®“He,g = colim Z" (He, 9)@ =~ (Hc,9)® ~ HIF,.
n

17
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3.2 RO(G)-Grading

Instead of grading over Z, we may grade over the real representation ring of G, namely
RO(G) = Z{iso classes of irreps of G over R}. It is often better to choose representatives.

Example 3.2.1.
(i) RO(C2) = Z{1,0},
(i) RO(C3) = Z{1,A},
(iii)) RO(Cy) = Z{1,0,A},
(iv) RO(Cy x Cp) = Z{1, pjo, m*c, p50}.
We can now invoke RO(G)-grading. Let V, W € Rep(G), then
myow(X)=[8V"W,X]¢ and i} ,,(X) = [Res% SV W, Rest X]H.

We obtain an RO(G)-graded Mackey functor 77, X where this fancy star notation was pioneered
by Hu—KTriz.

Example 3.2.2. We compute m_,H¢,Z = moXHc,Z = g by Example 2.1.2.
Exercise 3.2.3. A map of Cy-spectra f : X — Y is an m,-isomorphism if and only if it is an
nfz-isomorphism.

Proof. Use the cofiber sequence Co — S° — S” and its dual. If you're a 7t.-isomorphism, then we
can use the 5-Lemma and induction to get all other RO(G)-graded homotopy groups via the LES from

the cofiber sequence. Conversely, we have all the 72 and need 7% which again we get from the
5-Lemma. 0

If Ris aring in SpG, then we obtain a map 7y (R) ® tw(R) — tyew(R). If R is a commutative
ring in Sp©, then 71, R is graded-commutative but this is much more complicated than in the
ordinary setting.

Example 3.2.4. For G = C; we obtain a map
i1 ko(R) @ 7146 (R) = Ty it (k400 (R)

with graded-commutativity af = (—1)7e¥’Ba. Here, e = Ty : $° ® S7 ~ S ® S” which corre-
sponds to amap S — S, i.e. an element in A(Cy), after choosing certain preferred equivalences.
This is even an unit in A(C,).

A special case is

S kLI]R HC

Z
which on 7 gives A — Z = Z, ¢ — —1. So in these rings ¢ is a little simpler.
Let us enumerate some important elements.

Construction 3.2.5. Let V € Rep(G)

(i) We write ay : S° — SV, so ay € m_y(S).

(ii) If V is orientable, there exists a class uy € 7T|V‘,VHGZ & IqO(SV_W| ;7). 1t satisfies
ResS uy = +1.

18
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Remark 3.2.6. The cofiber sequences Cp — S0 % 8% and S—7 ﬂ SO — Gy yield
im(treCZ) =kera and ker(res?) =ima.
Example 3.2.7. Let G = C,. Then, 20 is orientable, so 1y, € m_2-Hc,Z exists.

Example 3.2.8. Here is a picture of r,Hc,Z.

Figure 7: The RO(C)-graded homotopy of Hc,Z

This is a culmination of our computations in Exercise 2.1.3 and Exercise 2.1.5. We can see a few
phenomena in this picture, e.g. related to Remark 3.2.6. For example:

0

e We have 0 € ker(resecz) = ima, so it must be a-divisible which is why these the term

makes sense.

¢ In the coordinate (0,0) we have tr$?1 = 2 in the constant Mackey functor and since
im(trgz) = kera, we deduce 2a = 0. This is compatible with how we have a Z /2 in g.

The slice spectral sequence

Ey' = i sP{X = 15X, dy : 1, P{X = m, 1P 1X
also has an RO(G)-graded form.

Observation 3.2.9. There is a spectral sequence

s,V _ |4 . 14 V+r—1
E2 - EstPVX = EstX/ dr . EstPVX — Estflpvi;;l X.

If R is a commutative ring in SpG, then we obtain

s,V sV 1% \%4 V4V p _ ps+s/ ,V+V!
E2 & E2 = EstPVR ® EV’fs’Pv/ R — EV+V’fsfs’Pv+V/ R = E2 .

Now, let’s reminisce back to the slice SS for kup as discussed in Section 1.4. It turns out that
there is a class 1 € 71,2°Hc,Z such that

E*ZPHC2Z = E*HCZZ{rl }‘

19
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We can now enumerate some elements on the Ez-page of SliceSS(kup):

Figure 8: A part of the spectral sequence.

We can also slightly twist the spectral sequence in RO(C;)-grading on the right and see that the
differential already comes from u.

Here is a depiction of 7t kuR together with the a-towers.

The row right above the x-axis are rr.kur which we have computed with the slice spectral
sequence (Section 1.4). Via the p-periodicity of KUR, we can propagate this onto the entire
picture.

20
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This drawing for example allows us to read off the geometric fixed points. We see these a

towers which often eventually get cut off. The geometric fixed points consist of precisely the
non-a-torsion elements.

Corollary 3.2.10. We have ®%2(kug) ~ HIF,[u?].

Exercise 3.2.11. Draw the RO(C;)-graded homotopy groups 7t, KUR.

Proof. We draw the following picture:

o =0 jaje KU[R
a ¢ T a8l 7 ¥ 28
7 T 23« |2 T 28« T
z /1./8 o T |FF /7,/8 & T T
23 ¢ T 7 3 2 ¥ 1
@« 7 T T3 @ T T 13 ar
2 Z 28a |22 € 23%«& 1
Z z285@ T |77 z29@ T T
230 o T |z & T zZ N
d z r z8ld v ¥ gz
7 T 28 | T 29a 7
Zz tlSew T |77 i3« T T
28 2 ¥ g3 2 T 2
&« ¢ T 1i|@ 2z T 135
z Z 238« |z Z ,2.9¢ T
7 29« T 7 z2.9@& T T
Z230 Z 7 2306 T T 2

The zero’th horizontal line was computed via the slice spectral sequence in Section 1.4. Real Bott
periodicity then gives r, KUr = m_1 KUR, so this allows us to propagate the picture in the j-direction.
We have drawn in the pre-Euler classes which are all eventually cut off. This indicates ®©2 KUg ~ 0. [

We will now start a new page for the new section to fit in some pictures on one page.
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4 Duality & A Glimpse of HHR

4.1 Duality
Let’s go back to the picture of 7, Hc,Z from Example 3.2.8.

For example, we may identify 7o, sHc,Z = Z* in there. Even more so: The horizontal line
it lies in only has this one Mackey functor, so 22—201_1(:2 Z ~ Hc,Z*. In particular, we see the

following picture:

N

z
/4
ZT

N N

p:

So the right is just a shift of the left. Starring at these pictures a bit longer reveils a sort of
symmetry. There these two beginnings of a cone and it seems like there is a horizontal line
which is at the center of the symmetry. These are drawn in on the left.

They are explained by duality. Let us recall this non-equivariantly first.

Construction 4.1.1. Since Q/Z and Q are injective, we get cohomology theories

Homap(7-+(—),Q/Z) and Homap(m—+(-), Q).
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By Brown representability, we obtain a map of spectra HQ = Io — I, 2.8 Moreover, we define
Iz = fib(Iq — Ig,z)- Thus, we obtain a fiber sequence

mapg, (X, Iz) —— mapg,(X, Ig) —— mapg (X, Iq,z)

IzX IoX lo/zX

The left is the Anderson dual, the right is the Brown—Comenetz dual.
Proposition 4.1.2. Let M € Ab.
(i) If M is torsion, then Ig,zHM ~ HM.
(ii) If M is torsion, then IzHM ~ ZfllQ/ZHM ~ Y THM.
(iii) If M is torsion-free, then [yHM ~ HM.
Proof. Part (ii) uses the fiber sequence from Construction 4.1.1 and (i). O

In the generic case of Mior — M — Mg We obtain a fiber sequence
HMfree ~ I7HMfree — IzHM —— I;HMior ~ L THMiqr.

This also works equivariantly. It was first studied in [Ric16] by sort of doing in levelwise in the
Mackey functor.

Observation 4.1.3. There are equivalences
I;HZ ~HZ* and IyHZ’ ~HZ’ and Ig/zHg ~ Hg.

Note how restriction and transfer are flipped. The fiber sequence Hg — HQZ’ — HZ’ now
leads to

Y 'Hg ~ I;Hg +— I;HQZ’ +—— I;HZ’ ~HZ".

This allows us to compute the homotopy Mackey functor of the middle term which suggests a
spectrification in the following.

Exercise 4.1.4. There is an equivalence [;HQZ’ ~ X'~ 1HZ.

Non-Proof. Naively, we can try to use the cofiber sequence ¥ 'Hg + [z HQZ’ <+ HZC from Observa-
tion 4.1.3. Applying £~ and using £"Hg ~ Hg from Exercise 2.1.3 yields

Hg +—— X1"7I,HQZ’ +—— X1""HZ’ ~ HZ*

where the equivalence on the right is computed in Example 2.1.4. We need to show that the middle term
is HZ. I thought that one could compute this via the LES

Z]2 +—?«— 7Z

i

0 Z

and certainly ?? = Z. But the top row sounds like an extension problem which is not solvable here: both
possible options are possible. O

8We need to see Hom Ab(T-1X,Q) = H'(X;Q) to get HQ ~ Ig. But both are cohomology theories and they
agree on S.
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Proof. We use HQZY ~ »3-3HZ and HZ* ~ ¥2-2HZ from Exercise 2.1.5. Thus,
I;HQZY ~ [,533%HZ ~ 3 3Hz* ~ 37!
using Observation 4.1.3. O

Our discussion, particularly Observation 4.1.3, shows that Iz is responsible for the symmetry
phenomena on the pictures:

One use is that now one only has to do one half of the Bredon homology computation and can
deduce the other half from duality.

These dualities are also related to the slice filtration. First, the Brown—Comenetz dual.
Proposition 4.1.5 (Ullman). There is an equivalence P}/(Ig,zX) ~ Ig /ZP__L‘X.
The Anderson dual is also useful, in the free case.

Example 4.1.6. Consider Z*Hg ~ X!*3%Hg — X"HZ — Z!*3%HZ as computed in Exam-
ple 3.1.2. Thus, we get

Iz> " P3PHZ —— [;Y"HZ —— Iz%*Hg

Z—l—Ssza Z_7HZ* 2_4_1IQ/ZHQ

Z—S—ZUHZ Z_SHg

using Observation 4.1.3. On the left we have a (—7)-slice, on the right a (—10)-slice. Applying
¥ leads us to

>-1-fHZ’ — ¥ 3HZ —— ¥ 3Hg

where the left is a (—3)-slice and the right is a (—6)-slice. Thus, we used the Anderson dual and
the slice filtration of X”HZ to learn about the slice filtration of ¥ 3HZ.
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4.2 Real Complex Bordism
There are analogues of KUR.

(i) In the 60’s Landweber defined MUR € SpCZ.

(ii) In the 70’s Araki worked out the formal group theory and defined BPk € Sp®2.

(iii) In the 90’s Hu-Kriz wrote an influential paper and computed 7, BPr. They write that this

was first computed in unpublished work of Araki.

These objects were highly popularized in [HHRO09].
Proposition 4.2.1 (Hu—Kriz).

(i) There is an equivalence ®©2 BPg ~ HIF,.

(ii) The Mackey functor 7t,,, BPR is constant.
Since 71, BP 2 Zp)[v1, vy, - - - ] with |v;]| = (27 — 1)2 we get

T BPR & Zo)[01,72,- -1 with [7;] = (2" — 1)p.

Since ®©2 BPRr ~ HIF,, we deduce that all 7;’s are a-torsion.

Theorem 4.2.2 (Slice Theorem, HHR). The non-trivial slices of BPR are

Py BPR ~ P T Z 0.

monomials in (v1,0,++)
Example 4.2.3. We get
P BPR ~ SPHZ {71} ~ Pikug
Py BPR ~ Z¥HZ {77} ~ Pikug,
PEBPR ~ ¥HZ {73, 72}.

Example 4.2.4.

(i) Here are some pictures of the E3-page of the RO(C;)-graded SliceSS(BPR).
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(i) Now the Ey-page.

Theorem 4.2.5 (Slice Differential Theorem, HHR). Let n € IN. Then, dyu2_1(u?") = a2n+2_15n+1.
Example 4.2.6. So ds(u) = a0y, d7(u?) = a’0,, di5(u*) = a'®v3, d31(u®) = a®'0,.
Here is a (non-exhaustive) collection of elements that survive:

e gk fork > 0.

e 7, forn > 1.

e 2uk fork > 0.

2 4

® UV, UV, - .

About the last list: Theoretically, 1?71 hits a’9,0, via d7 and u*o, by a'59,73 via dis. But these
elements already die earlier in the spectral sequence. For instance, the first element is killed by
ds.

4.3 Norms

The induction Ind$, : SH — 8C, X — Ind$ X = G, Ay X = Vg s X is about addition. There
is a multiplicative version, called the norm which is

Nf: S =88, X— NgX = A X.
G/H

There is a spectral version of this, first defined by Greenlees—May, but made popular by Hill-
Hopkins-Ravenel [HHR09]. For C; < G we have a functor Ngz : SpC2 — SpCZ.

Definition 4.3.1. Let G = Cyr. Then, MU}, = NE MUy and BP},” = N¢ BPg.
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By the slice theorem (Theorem 4.2.2) we can obtain Pzzli{ MU](I(QG)) o~ Indg2 S @ HeZ.
A word on [HHRO09]. They define a spectrum

MUSPID™Y] with D € 9, MUSY

The formalism of slice spectral sequences was developed to understand this spectrum. One
can show that this has a small gap in homotopy which one then propagates periodically by
inverting this element D. Then, the strategy is to show that the higher Kervaire classes vanish
here and would be detected if they were non-zero. Unfortunately, the periodicity is just large
enough that the last Kervaire class in dimension 126 is not resolved with this strategy.
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