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Abstract

These are my TeX’d notes of Bert Guillou’s eCHT minicourse on the equivariant slice
spectral sequence. You can find the lectures, exercise sheets, and Bert’s notes on his website
https://www.ms.uky.edu/~guillou/echtSlices/SlicesMinicourse.html.

I don’t entirely follow Bert’s notation and left out some review on equivariant homotopy
theory. Most exercises from the course along with their solutions also feature in these notes.
I’m thankful to Bert for catching one typo. Comments are very welcome!
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1 Introduction

Bert gave a longer review on equivariant homotopy theory, which I omitted in these notes.

1.1 Short Mackey Functor Review

Recall that for X ∈ SpG one obtains a Mackey functor πππππππππππππππππn(X) which has restriction and transfer
maps along with an action of WG H = NG H/H ∼= AutG(G/H) on πH

n (X).1

Example 1.1.1. We get the Burnside ring πππππππππππππππππ0(SG) ∼= AAAAAAAAAAAAAAAAA. For G = Cp this is depicted by:

Z{1, Cp}

Z

(1 p) (0
1)

There will be two Mackey functor constructions relevant to us:

Construction 1.1.2. There are two functors F, Q : ModZ[G] → Mack(G) which on objects are
given by

F(M)(H) = MH and Q(M)(H) = M/H.

The restriction for F is the inclusion map and the transfer for Q is the quotient map. We will
also write F(M) = MMMMMMMMMMMMMMMMM.

Example 1.1.3.

(i) We get F(Z) = ZZZZZZZZZZZZZZZZZ given by

Z

Z

1 2

(ii) We get that F(Zσ) is concentrated in the bottom group with the sign action.

1.2 Atiyah’s Real K-Theory

One can use that C2-action on C to promote KU ∈ Sp and obtain KUR ∈ SpC2 . We have
KUe

R ≃ KU and KUC2
R ≃ KO.

Remark 1.2.1.

(i) By classical Bott periodicity we get a 2-periodic KUe
R and an 8-periodic KUC2

R . Thus,
πππππππππππππππππn+8 KUR

∼= πππππππππππππππππn KUR.

(ii) There is also a Real Bott periodicity Σρ KUR ≃ KUR.

Problem 1.2.2. The Real Bott periodicity of KUR is not detected in the Postnikov filtration.

Response. Define a new filtration for C2-spectra.

1. It restricts to the Postnikov filtration after applying ResC2
e : SpC2 → Sp.

2. It interacts well with Σρ : SpC2 → SpC2 , written as Pn+2
k+2 (ΣρX) ≃ ΣρPn

k (X). This implies
the compatibility with Real Bott periodicity.

1We mod out the H-action on X, so it should have some residual G/H-action. But this doesn’t make sense in
general, as H need not be normal, so G/H need not be a group. The normalizer fixes this deficiency.
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1.3 The (Regular) Slice Filtration (G = C2)

Want fiber sequences

PnX X Pn−1X

where Pn is ≥ n and Pn−1 is ≤ n− 1. Also want

Pℓ
k+1X Pℓ

j X Pk
j X

for j < k < ℓ. For example

Pk+1
k+1 Pk+1

j X Pk
j X

giving a (k + 1)-slice.

The theory was pioneered by Dugger for C2 (and some motivic people afterwards) until HHR
studied this more thoroughly and in greater generality. There is a slight variant by Ullman from
his thesis which is a bit simpler and the definition we will use.

Definition 1.3.1. Let τ≥n ⊆ SpC2 denote the localizing subcategory generated by

• Skρ for 2k ≥ n,

• IndC2
e Sk for k ≥ n.

We write X ≥ n for X ∈ τ≥n and say that X is slice n-connective in that case.

Example 1.3.2. It turns out that τ≥0 ≃ SpC2
≥0 and τ≥1 ≃ SpC2

≥1.

Definition 1.3.3. We say X < n or X ≤ n− 1 if [W, X] = 0 for all W ∈ τ≥n. In that case, we say
that X is slice (n− 1)-coconnective.

Construction 1.3.4. We obtain a Bousfield localization Pn : SpG → SpG into τ≤n. Furthermore,
let

Pn+1(X) = fib(X → Pn(X)) and Pn
k (X) = PkPnX.

It takes some work to show Pn+1X ≥ n + 1.

Proposition 1.3.5 (HHR).

(i) P0
0 X ≃ Hπππππππππππππππππ0X,

(ii) Pn+2
k+2 (ΣρX) ≃ ΣρPn

k X,

(iii) P1
1 X ≃ Σ1H(πππππππππππππππππ1X/ ker resC2

e ),

(iv) If X → Y → Z is a fiber sequence with X ≥ n + 1 and Z ≤ n, then X ≃ Pn+1Y and
Z ≃ PnY.

In (iii) we force the restrictions to be injective and in (iv) the slogan is that if something looks
like a slice tower, then it is a slice tower!

Exercise 1.3.6. Compute P1
1 S1

C2
.

Proof. We use Proposition 1.3.5(iii). Note that πππππππππππππππππ1S1
C2
∼= πππππππππππππππππ0SC2

∼= AAAAAAAAAAAAAAAAA(C2) is the Burnside Mackey functor.
On the other hand, we must mod out the kernel of the restriction map which is ⟨1− σ⟩ ⊆ A(C2). So we
are left with ZZZZZZZZZZZZZZZZZ. Thus, P1

1 S1
C2
≃ ΣHZZZZZZZZZZZZZZZZZ.
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1.4 Back to Atiyah’s Real K-Theory

The structure maps of KUR are

KUC2
R ≃ KO

KUe
R ≃ KU

c r

given by complexification and realification. Let us try to compute the slices of KUR. This was
studied by Dugger [Dug05] but there is also a C4-version by HHR [HHR17].

• Taking π0 yields πππππππππππππππππ0 KUR
∼= ZZZZZZZZZZZZZZZZZ. Thus, P0

0 KUR ≃ HZZZZZZZZZZZZZZZZZ by Proposition 1.3.5(i).

• Taking π1 yields

Z/2

0

which Bert calls g for ’geometric’ and HHR call B(1, 0). Thus, P1
1 KUR ≃ Σ1Hg/ ker res ≃ ∗

by Proposition 1.3.5(iii).

• We can compute P2
2 KUR ≃ ΣρP0

0 Σ−ρ KUR ≃ ΣρP0
0 KUR ≃ ΣρHZZZZZZZZZZZZZZZZZ by Proposition 1.3.5(ii)

and Real Bott periodicity.

• A similar computation shows P3
3 KUR ≃ ΣρP1

1 Σ−ρ KUR ≃ ΣρP1
1 KUR ≃ ∗.

We deduce:

Lemma 1.4.1. Let n ∈ Z. Then, Pn
n KUR ≃

®
Σ

n
2 ρHZZZZZZZZZZZZZZZZZ 2 | n,
∗ 2 ∤ n.

.

Because it is a smaller model, let us focus on the connective cover kuR → KUR which has
kue

R ≃ ku and kuC2
R ≃ ko. It’s a fact that the connective cover is given by P0.

Corollary 1.4.2. Let n ∈ Z. Then, Pn
n kuR ≃

®
Σ

n
2 ρHZZZZZZZZZZZZZZZZZ 2 | n, n ≥ 0,
∗ else.

.

Construction 1.4.3. From the slice filtration

· · · P2X P1X P0X

we get a spectral sequence
Es,t

2 = πππππππππππππππππt−sPt
t X ⇒ πππππππππππππππππt−sX

with differential dr : πππππππππππππππππnPt
t X → πππππππππππππππππn−1Pt+r−1

t+r−1 X. This is the slice spectral sequence.

The Slice SS for kuR is depicted below:
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Figure 1: The E3-page for kuR.

The E2-page looks the same, just without the differentials. We will argue that this is the spectral
sequence throughout the minicourse. Note:

• For example, this bottom left antidiagonal consisting of g and Zσ is πππππππππππππππππ∗P2
2 kuR

∼= πππππππππππππππππ∗ΣρHZZZZZZZZZZZZZZZZZ.
We will compute these in the next lecture.

• Classically, it is known that π3 KO = 0, so this third g from the bottom must be killed. It
can only be hit by the third Z in the bottom row, so we obtain a differential.

• By multiplicativity this differential propagates.

• Classical Bott periodicity makes the picture repeat.

So we get the E4 = E∞-page:

Figure 2: The E4-page for kuR.

As so often, this is not the end of a spectral sequence. We have a horizontal vanishing line and
some extension problems are left (those are the orange lines).
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Exercise 1.4.4. Solve the extension problem to see that πππππππππππππππππ2kuR is given by the Mackey functor

Z/2

Zσ

0

This is also known as QZσ.

Proof. Indeed, the extension problem is a short exact sequence

0 g πππππππππππππππππ2kuR ZZZZZZZZZZZZZZZZZσ 0

which written out is

0 Z/2 πC2
2 kuR 0 0

0 0 πe
2kuR Zσ 0

so we can immediately read off the groups at each level. Moreover, the only possibility for the restriction
map is 0. So it remains to see if the transfer map is non-trivial. For this consider C2/e+ → S0 → Sσ and
X ∈ SpC2 . Tensoring yields

C2/e+ ⊗ X X Sσ ⊗ X

and applying (−)C2 then

Xe XC2 (Σσ)C2

so applying πn we get an exact sequence

πe
n(X) πC2

n (X) πC2
n (ΣσX).

tr
C2
e

We plug in X = kuR and n = 2; we are interested in trC2
e . On the other hand,

πC2
2 (ΣσkuR) ∼= πC2

2 (ΩkuR) ∼= πC2
3 (kuR) ∼= π3(ko) ∼= 0

by Bott periodicity. So trC2
e is the unique non-trivial map.

2 Bredon Homology Computations

2.1 Bredon Homology

Recall that we arrived at the slice spectral sequence πππππππππππππππππnPt
t kuR

∼= πππππππππππππππππnΣ
t
2 ρHZ⇒ πππππππππππππππππnkuR last time

(Corollary 1.4.2). So we need to compute these slices which are given by Bredon homology.

Definition 2.1.1. Let X ∈ SG
∗ and MMMMMMMMMMMMMMMMM ∈ Mack(G). Then, ‹H‹H‹H‹H‹H‹H‹H‹H‹H‹H‹H‹H‹H‹H‹H‹H‹Hn(X; MMMMMMMMMMMMMMMMM) = πππππππππππππππππn(X ⊗HMMMMMMMMMMMMMMMMM) is Bredon

homology.

Example 2.1.2. Last time for G = C2 we claimed that

πππππππππππππππππn(ΣρHZZZZZZZZZZZZZZZZZ) ∼=


ZZZZZZZZZZZZZZZZZσ n = 2,
g n = 1,
0 else.

Let us verify this now.
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Proof. Since Sρ ≃ S1 ∧ Sσ and S1 only shifts πππππππππππππππππn, it suffices to understand ΣσHZZZZZZZZZZZZZZZZZ. To compute
this we use the C2-CW structure on Sσ which can be described as the cofiber sequence

C2+ ∧ S0 S0 Sσ,

i.e. attach a single free C2-cell. Tensoring with HZZZZZZZZZZZZZZZZZ yields

C2+ ⊗HZZZZZZZZZZZZZZZZZ HZZZZZZZZZZZZZZZZZ Sσ ⊗HZZZZZZZZZZZZZZZZZ

and the last term is the one we want to understand! We note the following:

(i) Always, C2+ ⊗ X ≃ IndC2
e ResC2

e X.

(ii) We obtain πππππππππππππππππn(C2+ ⊗ X) ∼= indC2
e πn(ResC2

e X), an induced Mackey functor.2 for M ∈ Ab
the Mackey functor indC2

e M is given by

M

Z[C2]⊗Z M

1+γ ∇

Applying πππππππππππππππππ∗ to the aforementioned cofiber sequence thus yields a LES

0 ‹HHHHHHHHHHHHHHHHH1(Sσ; Z) indC2
e Z ZZZZZZZZZZZZZZZZZ ‹HHHHHHHHHHHHHHHHH0(Sσ; Z) 0.

So we need to compute the kernel and cokernel of indC2
e Z→ ZZZZZZZZZZZZZZZZZ which is:

· · · Z Z · · ·

· · · Z[C2] Z · · ·

2

1+γ 1 2

The bottom map sends 1, γ 7→ 1, so by commutativity of the diagram, the top arrow is forced to
be 2.3 Just compute kernel and cokernel levelwise!

0 Z Z Z/2

Zσ = Z{1− γ} Z[C2] Z 0

2

1+γ 1 2

This confirms πππππππππππππππππ0ΣσHZZZZZZZZZZZZZZZZZ ∼= g and πππππππππππππππππ1ΣσHZZZZZZZZZZZZZZZZZ ∼= ZZZZZZZZZZZZZZZZZσ.

Exercise 2.1.3. Compute πππππππππππππππππkΣnρHZZZZZZZZZZZZZZZZZ.

Proof. First of all, we note ΣσHg ≃ Hg and ΣσHZZZZZZZZZZZZZZZZZσ ≃ ΣHZZZZZZZZZZZZZZZZZ via exactly the same computational methods
as above. This yields

ΣρHg ≃ Σ1Hg and ΣρHZZZZZZZZZZZZZZZZZ
σ ≃ Σ2HZZZZZZZZZZZZZZZZZ.

We use the fiber sequence4

Σ2HC2
ZZZZZZZZZZZZZZZZZσ ΣρHC2

ZZZZZZZZZZZZZZZZZ Σ1HC2g.

2See also [Zen18, Definition 2.8].
3Note that the top map agrees with this transfer map on the right. This is not a coincidence and always happens

in these sorts of maps from the induced Mackey functor by exactly this argument.
4Here is an error it made. With the above we have a fiber sequence ΣσHZZZZZZZZZZZZZZZZZσ → ΣσHZZZZZZZZZZZZZZZZZ → ΣσHg and now it

sounds like we can just apply Ωσ but the resulting sequence is not a fiber sequence, as is checked on πππππππππππππππππ0. The mistake
is probably that the previous sequence is not given by applying Σσ to a fiber sequence but rather arises in a more
complicated fashion.
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Applying Σρ yields

Σ4HC2
ZZZZZZZZZZZZZZZZZ ≃ Σ2+ρHC2

ZZZZZZZZZZZZZZZZZσ Σ2ρHC2
ZZZZZZZZZZZZZZZZZ Σ1+ρHC2g ≃ Σ2HC2g

This gives πππππππππππππππππ2 = g and πππππππππππππππππ4 = ZZZZZZZZZZZZZZZZZ. One can now go on and obtains

Σ4+(n−2)ρHC2
ZZZZZZZZZZZZZZZZZ ΣnρHC2

ZZZZZZZZZZZZZZZZZ ΣnHg,

so we can proceed by induction. With a proper analysis of these terms we obtain

πππππππππππππππππn = πππππππππππππππππn+2 = · · · = πππππππππππππππππn+2⌊ n
2 ⌋ = g, πππππππππππππππππ2n ∼=

®
ZZZZZZZZZZZZZZZZZσ 2 ∤ n,
ZZZZZZZZZZZZZZZZZ 2 | n.

The other terms are 0.

We chose the kuR, so we obtained a first quadrant spectral sequence. If were to work with
KUR, then we’d also get the third quadrant, and the slices come from negative ρ-suspensions of
Bredon homology. This motivates the following computation.

Example 2.1.4. Let us compute Σ−σHZZZZZZZZZZZZZZZZZ. The cofiber sequence C2+ → S0 → Sσ dualizes to

S−σ S0 C2+

in SpC2 via self-dualizability of the orbits. Tensoring by HZZZZZZZZZZZZZZZZZ yields

Σ−σHZZZZZZZZZZZZZZZZZ HZZZZZZZZZZZZZZZZZ C2+ ⊗HZZZZZZZZZZZZZZZZZ

and thus we obtain an exact sequence

πππππππππππππππππ0Σ−σHZZZZZZZZZZZZZZZZZ ZZZZZZZZZZZZZZZZZ indC2
e Z πππππππππππππππππ−1Σ−σZZZZZZZZZZZZZZZZZ

This comes out to be

0 Z Z 0

0 Z Z[C2] Z[C2]/Z ∼= Zσ

1

1

1+γ2

1+γ

Thus, Σ−σHZZZZZZZZZZZZZZZZZ ≃ Σ−1HZZZZZZZZZZZZZZZZZσ.

You can further desuspend and keep going with the computation.

Exercise 2.1.5. Compute Σ−nρHC2
ZZZZZZZZZZZZZZZZZ.

Proof. We have already computed Σ−ρHZZZZZZZZZZZZZZZZZ ≃ Σ−2HZZZZZZZZZZZZZZZZZσ above (Example 2.1.4). The next step is to compute
Σ−2ρHZZZZZZZZZZZZZZZZZ ≃ Σ−3Σ−σHZZZZZZZZZZZZZZZZZσ. By tensoring with S−σ → S0 → C2+ we we have the fiber sequence

Σ−σHZZZZZZZZZZZZZZZZZσ HZZZZZZZZZZZZZZZZZσ C2+ ⊗HZZZZZZZZZZZZZZZZZσ

This leaves us with the diagram

0 0 Z Z

0 Zσ Z[C2] Z[C2]/Z{1− γ} ∼= Z

1

1+γ 2

1−γ

1

7
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where the bottom map is essentially because HZZZZZZZZZZZZZZZZZσ → C2+ ⊗HZZZZZZZZZZZZZZZZZσ = ∏C2
HZZZZZZZZZZZZZZZZZσ hits every factor com-

pletely, so on the trivial component it must be 1 and by C2-equivariance, we must get −γ. We have
Z[C2]/Z{1− γ} ∼= Z because the C2-action acts by γ · 1 = γ = 1 in this quotient. Commutativity of the
right square gives rise to those maps as depiced where 2 = 1 + γ. Thus, Σ−σHZZZZZZZZZZZZZZZZZσ ≃ Σ−1HZZZZZZZZZZZZZZZZZ∗.

Next, we need to compute Σ−3ρHZZZZZZZZZZZZZZZZZ ≃ Σ−5Σ−σHZZZZZZZZZZZZZZZZZ∗. An analogous fiber sequence gives rise to

0 Z Z Z/2

0 Z Z[C2] Z[C2]/Z{1 + γ} ∼= Zσ

2

2

1+γ1

1+γ

and so we identify the right-most term as QZσ. Thus, Σ−3ρHZZZZZZZZZZZZZZZZZ ≃ Σ−6HQZσ.

Next, we need to compute Σ−4ρHZZZZZZZZZZZZZZZZZ ≃ Σ−7Σ−σHQZσ. An analogous fiber sequence gives rise to

Z/2 Z/2 Z Z

0 Zσ Z[C2] Z[C2]/Z{1− γ} ∼= Z

0

0 1

1+γ 2

1−γ

1

so we get a fiber sequence

Hg Σ−σHQZσ Σ−1HZZZZZZZZZZZZZZZZZ∗

The next step would mostly consist of applying Σ−σ again. For the first term we use Σ−σHg ≃ Hg as
suggested in the proof of Exercise 2.1.3. The third term we already computed above. So at this point we
have all ingredients to induct. There are two cases:

• n odd: πππππππππππππππππ2n = QZσ and πππππππππππππππππ2n−2 = πππππππππππππππππ2n−4 = · · · = πππππππππππππππππn+3 = g,

• n even: πππππππππππππππππ2n ∼= ZZZZZZZZZZZZZZZZZ∗ and πππππππππππππππππ2n−1 = πππππππππππππππππ2n−3 = · · · = πππππππππππππππππn+3 = g.

We are finally done.

Example 2.1.6. Now consider G = C3. We have ρC3 = 1⊕ λ where λ is the 2-dimensional
rotation representation. Again, the CW-structure induces a cofiber sequence

C3+ S0 S�

where S� = C⋄3 is the spoke sphere or also the eggbeater (first suggested by Clover May). Note
that the notation is a bit misleading since S� is not a representation sphere. Attaching another
cells yields the cofiber sequence

C3+ ∧ S1 S� Sλ.

Tensor with HZZZZZZZZZZZZZZZZZ and you can compute as before. Essentially the same computation as in
Example 2.1.2 yields information about S�. Then, you do one more computation for Sλ. We
learn

πππππππππππππππππn(S� ⊗HZZZZZZZZZZZZZZZZZ) ∼=


g3 n = 0,
IIIIIIIIIIIIIIIII n = 1,
0 n = 2

and πππππππππππππππππn(Sλ ⊗HZZZZZZZZZZZZZZZZZ) ∼=


g3 n = 0,
0 n = 1,
ZZZZZZZZZZZZZZZZZ n = 2

where g3 is the Mackey functor with Z/3 fixed at the top, also called B(1, 0) in HHR notation
and IIIIIIIIIIIIIIIII = ker(Z[C3]→ Z).

Example 2.1.7. Now G = C4. The difference to C2 and C3 is that 4 is not a prime. We obtain a
decomposition ρC4

∼= 1⊕ σ⊕ λ where

8
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• σ is the sign representation of C4/C2 ∼= C2 and essentially pulled back along the quotient
map.

• λ is the 2-dimensional rotation representation with rotation by 90◦.

An approach to compute ‹H∗(Sλ; ZZZZZZZZZZZZZZZZZ) by attaching cells as before works here as well but an
alternative approach is via the cofiber sequence

S(λ)+ S0 Sλ

where S(λ) = S1
rot = C4 ∪ (C4 × e1). Thinking about the attaching map we sort of attach a point

with a 90◦-rotated one, i.e. CCCCCCCCCCCCCCCCC∗(S(λ)) = (indC4
e

1−γ−−→ indC4
e Z) which works out to be

Z Z

Z[C4/C2] Z[C4/C2]

Z[C4] Z[C4]

0

1+γ 1+γ

1+γ2

1−γ

1+γ2

1−γ

Computing kernel and cokernel yields

Z Z Z Z

Z Z[C4/C2] Z[C4/C2] Z

Z Z[C4] Z[C4] Z

1

0

1+γ 1+γ 2

1

2

1+γ2

1−γ

1+γ2 2

1

2

1−γ

1

The left object is ZZZZZZZZZZZZZZZZZ and the right one is ZZZZZZZZZZZZZZZZZ∗, the dual constant Mackey functor. This computes

HHHHHHHHHHHHHHHHHn(S(λ)) ∼=
®

ZZZZZZZZZZZZZZZZZ n = 1,
ZZZZZZZZZZZZZZZZZ∗ n = 0.

Thus, we can now run the LES for

S(λ)+ ⊗HZZZZZZZZZZZZZZZZZ HZZZZZZZZZZZZZZZZZ Sλ ⊗HZZZZZZZZZZZZZZZZZ

to compute

HHHHHHHHHHHHHHHHHn(Sλ) ∼=


ZZZZZZZZZZZZZZZZZ n = 2,
0 n = 1,
B(2, 0) n = 0

where B(2, 0) is the Mackey functor

Z/4

Z/2

0

2

9
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One could write this as the cofiber sequence from the Postnikov filtration, namely as

Σ2HZZZZZZZZZZZZZZZZZ ΣλHZZZZZZZZZZZZZZZZZ H(B(2, 0)).

See also [HHR17, Figure 6]. We’re still on the way to compute the homology of Sρ. So now
apply Σσ to obtain

Σ2+σHZZZZZZZZZZZZZZZZZ Σλ+σHZZZZZZZZZZZZZZZZZ ΣσH(B(2, 0)).

See also [HHR17, Figure 3]. These are now not so bad and it turns out that the right term has
π0, π1 while the left term has π2, π3, so they don’t interact.

Here is one idea to compute ΣσHC4
ZZZZZZZZZZZZZZZZZ. Consider the Mackey functor diagram

MMMMMMMMMMMMMMMMM(C4)

MMMMMMMMMMMMMMMMM(C2)

MMMMMMMMMMMMMMMMM(e)

along with the Weyl group actions. One can either chop off the bottom or restrict to the bottom
part but lose some of the Weyl group action. In diagrams, this comes from

Mack(C4/C2) SpC4/C2

Mack(C4) SpC4

Mack(C2) SpC2

q∗

res
C4
C2

(−)C2

Res
C4
C2

which has a spectral incarnation. In the setting q∗ : SpG/N ⇄ SpG : (−)N there is the projection
formula (q∗X⊗Y)N ≃ X⊗YN in SpG/N . Thus, we compute5

(Sσ ⊗HC4
ZZZZZZZZZZZZZZZZZ)C2 ≃ Sσ ⊗HC2

ZZZZZZZZZZZZZZZZZ

which we already computed (Example 2.1.2), namely it has πππππππππππππππππ1
∼= ZZZZZZZZZZZZZZZZZσ and πππππππππππππππππ0 ∼= g. Moreover,

ResC4
C2

ΣσHC4
ZZZZZZZZZZZZZZZZZ ≃ Σ1HC2

ZZZZZZZZZZZZZZZZZ.

We deduce

πππππππππππππππππ0(ΣσHC4
ZZZZZZZZZZZZZZZZZ) ∼= g = B(2, 1) =


Z/2
0
0

since there are no interactions. Moreover, πππππππππππππππππ1(ΣσHC4
ZZZZZZZZZZZZZZZZZ) is

0

Zσ

Zσ

1 2

5I think one proves (HC4
ZZZZZZZZZZZZZZZZZ)C2 ≃ HC2

ZZZZZZZZZZZZZZZZZ by computing πππππππππππππππππ∗.

10



Qi Zhu The Equivariant Slice Spectral Sequence

where we know the middle group with C2-action from the fixed points, and we know the
bottom group (without the C2-action) plus the maps from the restriction. In particular, the
C2-action on the bottom must make it Zσ, so it the bottom part is C2-equivariant.

2.2 The (Regular) Slice Filtration

We don’t have to change so much from Section 1.3; it’s basically all the same.

Definition 2.2.1.

(i) Let τ≥n ⊆ SpG denote the full localizing subcategory containing IndG
H SkρH for H ≤ G and

k ≥ 0 with k|H| ≥ n.

(ii) We define X ≤ n− 1 if [W, X] = 0 for all W ∈ τ≥n.

Example 2.2.2. One can check τ≥0 ≃ SpG
≥0.

We get similar properties but add one useful one.

Proposition 2.2.3.

(i) There is an equivalence P0
0 X ≃ Hπππππππππππππππππ0X.

(ii) There is an equivalence P1
1 X ≃ ΣH(πππππππππππππππππ1X/ ker res).

(iii) There is an equivalence Pn+|G|
k+|G| (Σ

ρX) ≃ ΣρPn
k (X).

(iv) There is an equivalence Pn
k ResG

H X ≃ ResG
H Pn

k X.

(v) There is an equivalence φ∗GPn
k X ≃ Pn|G|

k|G| φ∗GX

The last part is a result from Hill’s primer and φ∗G is the geometric inflation functor.

Example 2.2.4. Let G = C2. Then, ΣHg ≃ φ∗C2
ΣHF2, as g is concentrated in the top degree. So it

is a 2-slice.

This result from Hill is very useful in general since it is hard to tell when something is an n-slice.
Right now, this result is only stated by geometrically inflating from the trivial group. This can
be generalized.

Construction 2.2.5. Let N ⊴ G. Then, there exists a family F [N] such that its universal space
satisfies

(EF [N])H ≃
®

∅ H ≥ N,
∗ else.

We obtain a cofiber sequence

EF [N]+ S0 ·�EF [N]

which allows us to define two functors

ΦN(X) = (ẼF [N]⊗ X)N and φ∗N(Z) =·�EF [N]⊗ q∗Z

where q : G → G/N. This gives an adjunction

SpG SpG/NΦN

φ∗N

11
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Exercise 2.2.6. Let X ∈ SpC4 . Then, ΦC4 X ≃ ΦC4/C2 XC2 .

Proof. Recall that (−)C2 is the right adjoint of p∗ = InflC4
C4/C2

for p : C4 → C4/C2, so it has a residual
C4/C2-action. Anyway, let PG denote the family of proper subgroups of G. Then,

ΦC4/C2 XC2 ≃ (ẼPC4/C2+
⊗ XC2 )C2 ≃

Ä
(p∗ẼPC4/C2+

⊗ X)C2
äC4/C2 ≃ (p∗ẼPC4/C2+

⊗ X)C4 .

So it suffices to show p∗ẼPC4/C2+
≃ ẼPC4+. But indeed,

(p∗ẼPC4/C2+
)H ≃ ẼP pH

C4/C2+
≃
®

S0 H = C4,
∗ else

which characterizes ẼPC4+. Here, we used that for p : G → G/K one has (p∗X)H ≃ XpH as the left side
is explicitly given by

Orbop
G

p−→ Orbop
G/K

X−→ S , H 7→ pH 7→ XpH .

Proposition 2.2.7 (Hill–Ullman). Let N ⊴ G. Then, φ∗N Pn
k X ≃ Pn|N|

k|N| φ∗NX.

Example 2.2.8. Let G = C4.

(i) Let N = C2. We have seen that ΣHC2
ZZZZZZZZZZZZZZZZZ is a 1-slice (Proposition 1.3.5(iii)). Thus, φ∗C2

ΣHC2
ZZZZZZZZZZZZZZZZZ

is a 2-slice which is explicitly Σ1HC4 M for the Mackey functor M given by

Z

Z

0

1 2

(ii) Let N = C4. Again, we use that ΣHeZ is a 1-slice. Thus, φ∗C4
ΣHZ is a 4-slice given by

ΣHC4 N for the Mackey functor N given by Z concentrated in the top group.

3 More about Slice Towers

3.1 Examples: ΣVHGZZZZZZZZZZZZZZZZZ

Exercise 3.1.1. Let 0 ≤ n ≤ 6. Then, ΣnHC2
ZZZZZZZZZZZZZZZZZ is an n-slice.

Proof. The strategy is to use Proposition 1.3.5(i) – (iii) why delooping a few times and then checking
whether we get a 0-slice or a 1-slice which is an explicit algebraic statement about EM-spectra. The main
work was done in our computations (Exercise 2.1.5).

• n = 0: Certainly, HZZZZZZZZZZZZZZZZZ is a 0-slice by Proposition 1.3.5(i).

• n = 1: Also, ΣHZZZZZZZZZZZZZZZZZ is a 1-slice by Proposition 1.3.5(iii).

• n = 2: This is because Σ2−ρHZZZZZZZZZZZZZZZZZ ≃ HZZZZZZZZZZZZZZZZZσ is a 0-slice.

• n = 3: This is because Σ3−ρ ≃ ΣHZZZZZZZZZZZZZZZZZσ is a 1-slice.

• n = 4: This is because Σ4−2ρ ≃ HZZZZZZZZZZZZZZZZZ∗ is a 0-slice.

• n = 5: This is because Σ5−2ρ ≃ ΣHZZZZZZZZZZZZZZZZZ∗ is a 1-slice.

• n = 6: This is because Σ6−3ρHZZZZZZZZZZZZZZZZZ ≃ HQZσ is a 0-slice.

Yay.

12
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It turns out that 0 ≤ n ≤ 6 is the precise range where this phenomenon happens. We will take
some examples and show that they are not slices. Our strategy is to desuspend enough to ask if
it is a 0- or 1-slice and in attempting to see this, we will obtain slice fiber sequences.

Example 3.1.2. Consider Σ7HC2
ZZZZZZZZZZZZZZZZZ. By Proposition 1.3.5(ii) it is equivalent to ask if it is the

3ρ-suspension of some 1-slice, i.e. if Σ7HC2
ZZZZZZZZZZZZZZZZZ ≃ Σ3ρ+1HC2

MMMMMMMMMMMMMMMMM where MMMMMMMMMMMMMMMMM is some Mackey functor
with injective restriction maps (Proposition 1.3.5(iii)).

Equivalently, Σ7−3ρHC2
ZZZZZZZZZZZZZZZZZ ≃ Σ1HC2 QZσ using Exercise 2.1.5. But QZσ is the Mackey functor

Z/2

Zσ

0

which is evidently not a 1-slice. The top group is the obstruction to being a 1-slice and killing it
off leads to a SES

0 g QZσ ZZZZZZZZZZZZZZZZZσ 0.

It gives rise to a cofiber sequence

Σ1Hg Σ1HQZσ Σ1HZZZZZZZZZZZZZZZZZσ

which again yields

Σ4Hg ≃ Σ1+3ρHg Σ7HZZZZZZZZZZZZZZZZZ Σ1+3ρHZZZZZZZZZZZZZZZZZσ

which is the slice fiber sequence of Σ7HZZZZZZZZZZZZZZZZZ by Proposition 1.3.5(iv). Indeed, the left term first
of all uses an equivalence from Exercise 2.1.3. The left term is Σ4Hg ≃ φ∗C2

Σ4HF2 which is an
8-slice by Proposition 2.2.7.6 The right term is a 7-slice because we bumped up the 1-slice HZZZZZZZZZZZZZZZZZσ

by Σ3ρ.

Let’s use this to study SliceSS(Σ7HC2
ZZZZZZZZZZZZZZZZZ). Using the computation from Exercise 2.1.3 we arrive at

the picture

Figure 3: The slice spectral sequence for Σ7HC2
ZZZZZZZZZZZZZZZZZ.

The left g is the 8-slice and the right two terms are the 7-slice. Since we know Σ7HZZZZZZZZZZZZZZZZZ, we know
that these g’s must be killed, and the only chance for this is via the orange differential that’s
drawn in.

6See also Example 2.2.4.
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Example 3.1.3. Consider Σ2σHC2
ZZZZZZZZZZZZZZZZZ. Is this a 2-slice? Apply Σ−ρ, so by Proposition 1.3.5(ii) we

are equivalently asking if Σσ−1HC2
ZZZZZZZZZZZZZZZZZ is a 0-slice. We have seen (Example 2.1.2) that it sits in a

slice fiber sequence

HC2
ZZZZZZZZZZZZZZZZZσ Σσ−1HC2

ZZZZZZZZZZZZZZZZZ Σ−1HC2g

where the left is a 0-slice and the right is a (−2)-slice. So we already answered that the object in
question is not a 0-slice. Applying Σρ again gives

Σ2HC2
ZZZZZZZZZZZZZZZZZ ≃ ΣρHC2

ZZZZZZZZZZZZZZZZZσ Σ2σHC2
ZZZZZZZZZZZZZZZZZ ΣσHC2g ≃ HC2g

using the equivalences from Exercise 2.1.3. So SliceSS(Σ2σHC2
ZZZZZZZZZZZZZZZZZ) is the boring already collapsed

picture

Figure 4: The slice spectral sequence for Σ2σHC2
ZZZZZZZZZZZZZZZZZ.

Observe also that the slices are Eilenberg MacLane objects, so the slice filtration for Σ2σHC2
ZZZZZZZZZZZZZZZZZ is

the Postnikov filtration for Σ2σHC2
ZZZZZZZZZZZZZZZZZ.

These examples show that Σρ just shifts things around in the filtration to where they are easy to
understand, namely the 0- and 1-slices. This leaves us with Eilenberg-MacLane computations.
That’s a useful technique in general.

Example 3.1.4. Consider ΣλHC4
ZZZZZZZZZZZZZZZZZ.

• We know that the 2-slice is non-trivial, as detected by ResC4
e via |λ| = 2.

• Even better, consider ResC4
C2

ΣλHC4
ZZZZZZZZZZZZZZZZZ ≃ Σ2σHC2

ZZZZZZZZZZZZZZZZZ which has 0-slices and 2-slices.

We may compute
P0

0 ΣλHC4
ZZZZZZZZZZZZZZZZZ ≃ HC4

πππππππππππππππππ0ΣλHC4
ZZZZZZZZZZZZZZZZZ ≃ HC4 B(2, 0)

by Proposition 2.2.3 and Example 2.1.7. Even more so, in Example 2.1.7 we had found

P1 ≃ Σ2HC4
ZZZZZZZZZZZZZZZZZ ΣλHC4

ZZZZZZZZZZZZZZZZZ HC4 B(2, 0) ≃ P0
0 .

We claim that Σ2HC4
ZZZZZZZZZZZZZZZZZ is a 2-slice.

• It is ≥ 2: Indeed, it is 2-connective (and 2 ≥ 0), so it is slice 2-connective.

• It is ≤ 2: Recall that we need to showî
IndC4

H SkρH , Σ2HC4
ZZZZZZZZZZZZZZZZZ
óC4 ∼= 0

14
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for H ≤ C4 and k|H| > 2. By adjunction, this is an H-equivariant question. But now note
that ResC4

C2
Σ2HC4

ZZZZZZZZZZZZZZZZZ ≃ Σ2HC2
ZZZZZZZZZZZZZZZZZ is a 2-slice (Exercise 3.1.1). We are left with the case H = C4.

For this, we have to know

[Skρ, Σ2HC4
ZZZZZZZZZZZZZZZZZ]C4 ∼= π−2(Σ−kρHC4

ZZZZZZZZZZZZZZZZZ) ∼= 0.

This can be done and is e.g. in [HHR17, Figure 3].

So the Postnikov filtration for ΣλHC4
ZZZZZZZZZZZZZZZZZ is the slice filtration.

One learning of the above example should be that coconnectivity is often a Bredon homology
computation.

Exercise 3.1.5. Show that ΣnHC4
ZZZZZZZZZZZZZZZZZ is an n-slice for 0 ≤ n ≤ 4.

Proof. For n = 0, 1 this is clear by Proposition 2.2.3. For n = 2, 3, 4 we proceed as above (Example 3.1.4).
Everything is the same and we need to read off that π−m(Σ−kρHC4

ZZZZZZZZZZZZZZZZZ) ∼= 0 for m = 2, 3, 4. Look at the
following picture.

Figure 5: This is [HHR17, Figure 3].

Whatever all these symbols mean, our desired groups are the vertical lines at −1,−2,−3. We read off
that these vanish.

Exercise 3.1.6. There is a slice sequence

P8
8 ≃ Σ2HC4g Σ5HC4

ZZZZZZZZZZZZZZZZZ Σ3+2σHC4
ZZZZZZZZZZZZZZZZZ ≃ P5

5 .

Proof. First, we note that the diagram
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0 Z Z Z/2 0

0 Z Z 0 0

0 Z Z 0 0

2

2 1

1

1

1

2

12

1

2

describes a SES of Mackey functors

0 ZZZZZZZZZZZZZZZZZ(2, 1) ZZZZZZZZZZZZZZZZZ g 0

where ZZZZZZZZZZZZZZZZZ(2, 1) is this Mackey functor on the left. Thus, we obtain a fiber sequence

Σ2+2σHC4g Σ3+2σHC4
ZZZZZZZZZZZZZZZZZ(2, 1) Σ3+2σHC4ZZZZZZZZZZZZZZZZZ

By inflating up the C2-equivalence ΣσHC2g ≃ HC2g from Exercise 2.1.3 we also see that the left side is
Σ2HC4g. Moreover, Σ2−2σHC4

ZZZZZZZZZZZZZZZZZ ≃ HC4
ZZZZZZZZZZZZZZZZZ(2, 1) by [HHR17, Figure 6].

Figure 6: This is [HHR17, Figure 6].

This yields the desired fiber sequence. We still need to show that it is a slice fiber sequence. The left side
is quick via Proposition 2.2.3(v), as Σ2HC4g ≃ φ∗C4

Σ2HF2. Now onto the right side. We must equivalently
show that Σ2+σ−λHC4

ZZZZZZZZZZZZZZZZZ is a 1-slice. We do so by explicitly computing its homotopy groups. Consider
the cofiber sequence

C4/C2+ S0 Sσ

which is an inflated version of the standard cofiber sequence for C2. So we obtain a cofiber sequence

C4/C2+ ⊗ Σ−λHC4
ZZZZZZZZZZZZZZZZZ Σ−λHZZZZZZZZZZZZZZZZZ Σσ−λHZZZZZZZZZZZZZZZZZ

We can read off [HHR17, Figure 6] that Σ−λHZZZZZZZZZZZZZZZZZ ≃ Σ−2HZZZZZZZZZZZZZZZZZ∗. Moreover, the homotopy Mackey functor of
the left object is computed by a lift Mackey functor [Zen18, Definition 2.8, p. 44]. Namely, we have

πππππππππππππππππ∗(C4/C2+ ⊗ Σ−λHC4
ZZZZZZZZZZZZZZZZZ)(C4/C4) ∼= πππππππππππππππππ∗(Σ−λHC4

ZZZZZZZZZZZZZZZZZ)(C4/C2 × C4/C4) ∼= πC2∗ X

πππππππππππππππππ∗(C4/C2+ ⊗ Σ−λHC4
ZZZZZZZZZZZZZZZZZ)(C4/C2) ∼= πππππππππππππππππ∗(Σ−λHC4

ZZZZZZZZZZZZZZZZZ)(C4/C2 × C4/C2) ∼= πC2∗ X⊕ πC2∗ X

πππππππππππππππππ∗(C4/C2+ ⊗ Σ−λHC4
ZZZZZZZZZZZZZZZZZ)(C4/e) ∼= πππππππππππππππππ∗(Σ−λHC4

ZZZZZZZZZZZZZZZZZ)(C4/C2 × C4/e) ∼= πC2∗ X ∼= πC4∗ X⊕ πC4∗ X

where we use C4/C2 × C4/C2 ∼= C4 ⨿ C4/C2 and C4/C2 × C4/e ∼= C4/e⨿ C4/e. Using the LES allows us
to arrive at
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0 Z Z 0

Z⟨(1,−1)⟩ = Z Z⊕Z Z 0

Z⟨(1,−1)⟩ = Z Z⊕Z Z 0

∆

1

2

2

∇

∇

2 2

1

1 1

∇

1

where the left term is πππππππππππππππππ−1(C4/C2+ ⊗ Σ−λHC4
ZZZZZZZZZZZZZZZZZ). This shows that Σ2+σ−λHC4

ZZZZZZZZZZZZZZZZZ is a 1-slice.

Proposition 3.1.7 (Hill–Yarnall). Let X ∈ SpG. Then, X ≥ n if and only if ΦHX is n
|H| -connective

for all H ≤ G.

Here, n
|H| -connective means

†
n
|H|

£
-connective. There is also a version for genuine fixed points

but that one unfortunately does not work for n < 0.

Example 3.1.8. Let G = C2.

(i) We get X ≥ 1 if and only if ResC2
e X is 1-connective and ΦC2 X is 1

2 -connective, i.e. 1-
connective.

(ii) We get X ≥ 2 if and only if ResC2
e X is 2-connective and ΦC2 X is 1-connective.

Example 3.1.9. Let G = C4. Then, X ≥ −3 if and only if

ResC4
e X ≥ 3, ΦC2 X ≥ −3

2
, ΦC4 X ≥ −3

4
.

Let’s try specific examples for X.

Example 3.1.10. Consider Σ1HC2g. Then, ResC2
e Σ1HC2g ≃ ∗ is n-connective for all n and

ΦC2 Σ1HC2g ≃ Σ1ΦC2HC2g ≃ Σ1HF2

using symmetric monoidality of ΦG and it being inverse to taking geometric spectra.7 This is
1-connective. Altogether, Σ1HC2g ≥ 2 by Example 3.1.8(ii).

Example 3.1.11. Consider Σ−ρHC4
ZZZZZZZZZZZZZZZZZ ≃ Σ−σ−λHC4

ZZZZZZZZZZZZZZZZZ. We compute

ResC4
e Σ−σ−λHC4

ZZZZZZZZZZZZZZZZZ ≃ Σ−3HZZZZZZZZZZZZZZZZZ ≥ −3,

ΦC2 Σ−σ−λHC4
ZZZZZZZZZZZZZZZZZ ≃ Σ−1ΦC2HC2

ZZZZZZZZZZZZZZZZZ ≥ −1,

ΦC4 Σ−σ−λHC4
ZZZZZZZZZZZZZZZZZ ≃ ΦC4HC4

ZZZZZZZZZZZZZZZZZ ≥ 0

where we use symmetric monoidality of geometric fixed points and the Σ−1 in the second
line comes from −σ as it is really pulled back along C4/C2 → C2. That the geometric fixed
points of connective spectra is connective for example follows from the converse of Hill-Yarnall
(Proposition 3.1.7). We deduce Σ−σ−λHC4

ZZZZZZZZZZZZZZZZZ ≥ −3 by Example 3.1.9.
7Alternatively, note that a : HC2g→ ΣσHC2g is an equivalence, as seen in Exercise 2.1.3. Thus,

ΦC2 HC2g
∼= colim

n
Σnσ(HC2g)C2 ≃ (HC2g)C2 ≃ HF2.
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3.2 RO(G)-Grading

Instead of grading over Z, we may grade over the real representation ring of G, namely
RO(G) = Z{iso classes of irreps of G over R}. It is often better to choose representatives.

Example 3.2.1.

(i) RO(C2) = Z{1, σ},

(ii) RO(C3) = Z{1, λ},

(iii) RO(C4) = Z{1, σ, λ},

(iv) RO(C2 × C2) = Z{1, p∗1σ, m∗σ, p∗2σ}.

We can now invoke RO(G)-grading. Let V, W ∈ Rep(G), then

πV−W(X) = [SV−W , X]G and πH
V−W(X) = [ResG

H SV−W , ResG
H X]H.

We obtain an RO(G)-graded Mackey functor πππππππππππππππππ⋆X where this fancy star notation was pioneered
by Hu–Kriz.

Example 3.2.2. We compute πππππππππππππππππ−σHC2
ZZZZZZZZZZZZZZZZZ ∼= πππππππππππππππππ0ΣσHC2

ZZZZZZZZZZZZZZZZZ ∼= g by Example 2.1.2.

Exercise 3.2.3. A map of C2-spectra f : X → Y is an πππππππππππππππππ∗-isomorphism if and only if it is an
πC2
⋆ -isomorphism.

Proof. Use the cofiber sequence C2+ → S0 → Sσ and its dual. If you’re a πππππππππππππππππ∗-isomorphism, then we
can use the 5-Lemma and induction to get all other RO(G)-graded homotopy groups via the LES from
the cofiber sequence. Conversely, we have all the πC2

⋆ and need πe
∗ which again we get from the

5-Lemma.

If R is a ring in SpG, then we obtain a map πV(R)⊗ πW(R)→ πV⊕W(R). If R is a commutative
ring in SpG, then π⋆R is graded-commutative but this is much more complicated than in the
ordinary setting.

Example 3.2.4. For G = C2 we obtain a map

πi+kσ(R)⊗ πj+ℓσ(R)→ πi+j+(k+ℓ)σ(R)

with graded-commutativity αβ = (−1)ijεkℓβα. Here, ε = τW : Sσ ⊗ Sσ ≃ Sσ ⊗ Sσ which corre-
sponds to a map S→ S, i.e. an element in A(C2), after choosing certain preferred equivalences.
This is even an unit in A(C2).

A special case is

S kuR HC2
ZZZZZZZZZZZZZZZZZ

which on πππππππππππππππππ0 gives AAAAAAAAAAAAAAAAA→ ZZZZZZZZZZZZZZZZZ ∼= ZZZZZZZZZZZZZZZZZ, ε 7→ −1. So in these rings ε is a little simpler.

Let us enumerate some important elements.

Construction 3.2.5. Let V ∈ Rep(G)

(i) We write aV : S0 → SV , so aV ∈ π−V(S).

(ii) If V is orientable, there exists a class uV ∈ π|V|−VHGZZZZZZZZZZZZZZZZZ ∼= ‹H0(SV−|V|; ZZZZZZZZZZZZZZZZZ). It satisfies
ResG

e uV = ±1.
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Remark 3.2.6. The cofiber sequences C2+ → S0 a−→ Sσ and S−σ Σ−σa−−→ S0 → C2+ yield

im(trC2
e ) = ker a and ker(resC2

e ) = im a.

Example 3.2.7. Let G = C2. Then, 2σ is orientable, so u2σ ∈ π2−2σHC2
ZZZZZZZZZZZZZZZZZ exists.

Example 3.2.8. Here is a picture of πππππππππππππππππ⋆HC2
ZZZZZZZZZZZZZZZZZ.

Figure 7: The RO(C2)-graded homotopy of HC2
ZZZZZZZZZZZZZZZZZ.

This is a culmination of our computations in Exercise 2.1.3 and Exercise 2.1.5. We can see a few
phenomena in this picture, e.g. related to Remark 3.2.6. For example:

• We have θ ∈ ker(resC2
e ) = im a, so it must be a-divisible which is why these the term θ

a
makes sense.

• In the coordinate (0, 0) we have trC2
e 1 = 2 in the constant Mackey functor and since

im(trC2
e ) = ker a, we deduce 2a = 0. This is compatible with how we have a Z/2 in g.

The slice spectral sequence

Es,t
2 = πππππππππππππππππt−sPt

t X ⇒ πππππππππππππππππt−sX, dr : πππππππππππππππππnPt
t X → πππππππππππππππππn−1Pt+r−1

t+r−1 X

also has an RO(G)-graded form.

Observation 3.2.9. There is a spectral sequence

Es,V
2 = πππππππππππππππππV−sPV

V X ⇒ πππππππππππππππππV−sX, dr : πππππππππππππππππV−sPV
V X → πππππππππππππππππV−s−1PV+r−1

V+r−1 X.

If R is a commutative ring in SpG, then we obtain

Es,V
2 ⊗ Es′,V′

2 = πππππππππππππππππV−sPV
V R⊗ πππππππππππππππππV′−s′PV′

V′ R→ πππππππππππππππππV+V′−s−s′PV+V′
V+V′ R = Es+s′,V+V′

2 .

Now, let’s reminisce back to the slice SS for kuR as discussed in Section 1.4. It turns out that
there is a class r1 ∈ πρΣρHC2

ZZZZZZZZZZZZZZZZZ such that

πππππππππππππππππ⋆ΣρHC2
ZZZZZZZZZZZZZZZZZ ∼= πππππππππππππππππ⋆HC2

ZZZZZZZZZZZZZZZZZ{r1}.
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We can now enumerate some elements on the E3-page of SliceSS(kuR):

Figure 8: A part of the spectral sequence.

We can also slightly twist the spectral sequence in RO(C2)-grading on the right and see that the
differential already comes from u.

Here is a depiction of πππππππππππππππππ⋆kuR together with the a-towers.

The row right above the x-axis are πππππππππππππππππ∗kuR which we have computed with the slice spectral
sequence (Section 1.4). Via the ρ-periodicity of KUR, we can propagate this onto the entire
picture.
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This drawing for example allows us to read off the geometric fixed points. We see these a
towers which often eventually get cut off. The geometric fixed points consist of precisely the
non-a-torsion elements.

Corollary 3.2.10. We have ΦC2(kuR) ≃ HF2[u2].

Exercise 3.2.11. Draw the RO(C2)-graded homotopy groups πππππππππππππππππ⋆ KUR.

Proof. We draw the following picture:

The zero’th horizontal line was computed via the slice spectral sequence in Section 1.4. Real Bott
periodicity then gives πππππππππππππππππσ KUR

∼= πππππππππππππππππ−1 KUR, so this allows us to propagate the picture in the j-direction.
We have drawn in the pre-Euler classes which are all eventually cut off. This indicates ΦC2 KUR ≃ 0.

We will now start a new page for the new section to fit in some pictures on one page.
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4 Duality & A Glimpse of HHR

4.1 Duality

Let’s go back to the picture of πππππππππππππππππ⋆HC2
ZZZZZZZZZZZZZZZZZ from Example 3.2.8.

For example, we may identify πππππππππππππππππ2σ−2HC2
ZZZZZZZZZZZZZZZZZ ∼= ZZZZZZZZZZZZZZZZZ∗ in there. Even more so: The horizontal line

it lies in only has this one Mackey functor, so Σ2−2σHC2
ZZZZZZZZZZZZZZZZZ ≃ HC2

ZZZZZZZZZZZZZZZZZ∗. In particular, we see the
following picture:

So the right is just a shift of the left. Starring at these pictures a bit longer reveils a sort of
symmetry. There these two beginnings of a cone and it seems like there is a horizontal line
which is at the center of the symmetry. These are drawn in on the left.

They are explained by duality. Let us recall this non-equivariantly first.

Construction 4.1.1. Since Q/Z and Q are injective, we get cohomology theories

HomAb(π−∗(−), Q/Z) and HomAb(π−∗(−), Q).
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By Brown representability, we obtain a map of spectra HQ = IQ → IQ/Z.8 Moreover, we define
IZ = fib(IQ → IQ/Z). Thus, we obtain a fiber sequence

mapSp(X, IZ) mapSp(X, IQ) mapSp(X, IQ/Z)

IZX IQX IQ/ZX

The left is the Anderson dual, the right is the Brown–Comenetz dual.

Proposition 4.1.2. Let M ∈ Ab.

(i) If M is torsion, then IQ/ZHM ≃ HM.

(ii) If M is torsion, then IZHM ≃ Σ−1 IQ/ZHM ≃ Σ−1HM.

(iii) If M is torsion-free, then IZHM ≃ HM.

Proof. Part (ii) uses the fiber sequence from Construction 4.1.1 and (i).

In the generic case of Mtor ↪→ M ↠ Mfree we obtain a fiber sequence

HMfree ≃ IZHMfree IZHM IZHMtor ≃ Σ−1HMtor.

This also works equivariantly. It was first studied in [Ric16] by sort of doing in levelwise in the
Mackey functor.

Observation 4.1.3. There are equivalences

IZHZZZZZZZZZZZZZZZZZ ≃ HZZZZZZZZZZZZZZZZZ
∗ and IZHZZZZZZZZZZZZZZZZZ

σ ≃ HZZZZZZZZZZZZZZZZZ
σ and IQ/ZHg ≃ Hg.

Note how restriction and transfer are flipped. The fiber sequence Hg→ HQZσ → HZZZZZZZZZZZZZZZZZσ now
leads to

Σ−1Hg ≃ IZHg IZHQZσ IZHZZZZZZZZZZZZZZZZZσ ≃ HZZZZZZZZZZZZZZZZZσ.

This allows us to compute the homotopy Mackey functor of the middle term which suggests a
spectrification in the following.

Exercise 4.1.4. There is an equivalence IZHQZσ ≃ Σσ−1HZZZZZZZZZZZZZZZZZ.

Non-Proof. Naively, we can try to use the cofiber sequence Σ−1Hg← IZHQZσ ← HZZZZZZZZZZZZZZZZZσ from Observa-
tion 4.1.3. Applying Σ1−σ and using ΣσHg ≃ Hg from Exercise 2.1.3 yields

Hg Σ1−σ IZHQZZZZZZZZZZZZZZZZZσ Σ1−σHZZZZZZZZZZZZZZZZZσ ≃ HZZZZZZZZZZZZZZZZZ∗

where the equivalence on the right is computed in Example 2.1.4. We need to show that the middle term
is HZZZZZZZZZZZZZZZZZ. I thought that one could compute this via the LES

Z/2 ? Z

0 ?? Z

2 1

and certainly ?? = Z. But the top row sounds like an extension problem which is not solvable here: both
possible options are possible.

8We need to see HomAb(π−nX, Q) ∼= Hn(X; Q) to get HQ ≃ IQ. But both are cohomology theories and they
agree on S.
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Proof. We use HQZσ ≃ Σ3−3σHZZZZZZZZZZZZZZZZZ and HZZZZZZZZZZZZZZZZZ∗ ≃ Σ2−2σHZZZZZZZZZZZZZZZZZ from Exercise 2.1.5. Thus,

IZHQZσ ≃ IZΣ3−3σHZZZZZZZZZZZZZZZZZ ≃ Σ3σ−3HZZZZZZZZZZZZZZZZZ
∗ ≃ Σσ−1

using Observation 4.1.3.

Our discussion, particularly Observation 4.1.3, shows that IZ is responsible for the symmetry
phenomena on the pictures:

One use is that now one only has to do one half of the Bredon homology computation and can
deduce the other half from duality.

These dualities are also related to the slice filtration. First, the Brown–Comenetz dual.

Proposition 4.1.5 (Ullman). There is an equivalence Pn
k (IQ/ZX) ≃ IQ/ZP−k

−nX.

The Anderson dual is also useful, in the free case.

Example 4.1.6. Consider Σ4Hg ≃ Σ1+3ρHg → Σ7HZZZZZZZZZZZZZZZZZ → Σ1+3ρHZZZZZZZZZZZZZZZZZσ as computed in Exam-
ple 3.1.2. Thus, we get

IZΣ1+3ρHZZZZZZZZZZZZZZZZZσ IZΣ7HZZZZZZZZZZZZZZZZZ IZΣ4Hg

Σ−1−3ρHZZZZZZZZZZZZZZZZZσ Σ−7HZZZZZZZZZZZZZZZZZ∗ Σ−4−1 IQ/ZHg

Σ−5−2σHZZZZZZZZZZZZZZZZZ Σ−5Hg

using Observation 4.1.3. On the left we have a (−7)-slice, on the right a (−10)-slice. Applying
Σ2ρ leads us to

Σ−1−ρHZZZZZZZZZZZZZZZZZσ Σ−3HZZZZZZZZZZZZZZZZZ Σ−3Hg

where the left is a (−3)-slice and the right is a (−6)-slice. Thus, we used the Anderson dual and
the slice filtration of Σ7HZZZZZZZZZZZZZZZZZ to learn about the slice filtration of Σ−3HZZZZZZZZZZZZZZZZZ.
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4.2 Real Complex Bordism

There are analogues of KUR.

(i) In the 60’s Landweber defined MUR ∈ SpC2 .

(ii) In the 70’s Araki worked out the formal group theory and defined BPR ∈ SpC2 .

(iii) In the 90’s Hu–Kriz wrote an influential paper and computed π⋆ BPR. They write that this
was first computed in unpublished work of Araki.

These objects were highly popularized in [HHR09].

Proposition 4.2.1 (Hu–Kriz).

(i) There is an equivalence ΦC2 BPR ≃ HF2.

(ii) The Mackey functor πππππππππππππππππnρ BPR is constant.

Since π∗ BP ∼= Z(2)[v1, v2, · · · ] with |vi| = (2i − 1)2 we get

π∗ρ BPR
∼= Z(2)[v1, v2, · · · ] with |vi| = (2i − 1)ρ.

Since ΦC2 BPR ≃ HF2, we deduce that all vi’s are a-torsion.

Theorem 4.2.2 (Slice Theorem, HHR). The non-trivial slices of BPR are

P2n
2n BPR ≃

⊕
monomials in (v1,v2,··· )

ΣnρZZZZZZZZZZZZZZZZZ(2).

Example 4.2.3. We get

P2
2 BPR ≃ ΣρHZZZZZZZZZZZZZZZZZ(2){v1} ≃ P2

2 kuR

P4
4 BPR ≃ Σ2ρHZZZZZZZZZZZZZZZZZ(2){v2

1} ≃ P4
4 kuR,

P6
6 BPR ≃ Σ3ρHZZZZZZZZZZZZZZZZZ(2){v3

1, v2}.

Example 4.2.4.

(i) Here are some pictures of the E3-page of the RO(C2)-graded SliceSS(BPR).
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(ii) Now the E7-page.

Theorem 4.2.5 (Slice Differential Theorem, HHR). Let n ∈N. Then, d2n+2−1(u2n
) = a2n+2−1vn+1.

Example 4.2.6. So d3(u) = a3v1, d7(u2) = a7v2, d15(u4) = a15v3, d31(u8) = a31v4.

Here is a (non-exhaustive) collection of elements that survive:

• ak for k ≥ 0.

• vn for n ≥ 1.

• 2uk for k ≥ 0.

• u2v1, u4v2, · · · .

About the last list: Theoretically, u2v1 hits a7v1v2 via d7 and u4v2 by a15v2v3 via d15. But these
elements already die earlier in the spectral sequence. For instance, the first element is killed by
d3.

4.3 Norms

The induction IndG
H : S H

∗ → SG
∗ , X 7→ IndG

H X = G+ ∧H X =
∨

G/H X is about addition. There
is a multiplicative version, called the norm which is

NG
H : S H

∗ → SG
∗ , X 7→ NG

H X =
∧

G/H

X.

There is a spectral version of this, first defined by Greenlees–May, but made popular by Hill–
Hopkins–Ravenel [HHR09]. For C2 ≤ G we have a functor NG

C2
: SpC2 → SpC2 .

Definition 4.3.1. Let G = C2n . Then, MU((G))
R = NG

C2
MUR and BP((G))

R = NG
C2

BPR.
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By the slice theorem (Theorem 4.2.2) we can obtain P2k
2k MU((G))

R ≃ IndG
C2

Skρ ⊗HGZZZZZZZZZZZZZZZZZ.

A word on [HHR09]. They define a spectrum

MU((C8))
R [D−1] with D ∈ π19ρ MU((C8))

R .

The formalism of slice spectral sequences was developed to understand this spectrum. One
can show that this has a small gap in homotopy which one then propagates periodically by
inverting this element D. Then, the strategy is to show that the higher Kervaire classes vanish
here and would be detected if they were non-zero. Unfortunately, the periodicity is just large
enough that the last Kervaire class in dimension 126 is not resolved with this strategy.
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