17, $X W M B-A B$
Behauptung: Tie einaige rëglichkert fur diese 4 Prim zainlen ist $(2,3,5,5)$.
Beweris: Seien drese 4 gesuchten thimzahlen $P_{u} P_{2}, P_{3}, P_{4}$. Dann bsschreibt die Auffeabenstellung dre Gleichung

$$
\begin{equation*}
P_{1} P_{2} P_{2} p_{4}=10\left(p_{1}+p_{2}+p_{3}+p_{4}\right) \tag{a}
\end{equation*}
$$

Da die rescite seite dureh 10 teilbar rist, tent 10 auch $p_{1} p_{2} P_{4} P_{4}$. Also teilen 2 und 5 papapapy. Dre ènergen trimzahken, drie dulch R baw, 5 Aeilbar sind, sird aker 2 and S selbet. Foglich muss fit $10=2.5 \mid p_{1} p_{2} p_{3 p} 4$ mindestans eive Frismzahi 2 und eine orwdene drasse vier - s sejn.

Wegen der symmetric in (A) Kémen wir oldA

$$
\begin{array}{lll}
\hat{F}_{-2} & \cdots-1 & a_{1}=5 \\
p_{1}=2 & \text { wid } & p_{2}=5
\end{array}
$$

satien.
Eanngaseltst in (1) viefert

$$
\begin{aligned}
& 10 p_{44}=10\left(2+5+p_{3}+p_{4}\right) \\
& R_{8} P_{4}=7+P_{4}+P_{4} \\
& p_{2} P_{4}-p_{7} \rightarrow p_{4}+1=8 \text { Beveicis der idenintít: } \\
& \left.\left(p_{2}-1\right)\left(p_{4}-x\right)=8\right\} \text { focuntiopiozeren }
\end{aligned}
$$

Wir wrterischerden abso alle tille \& in zwet -riktaton' aufuntenlon. Dre einägen Möghinteriten sind (ohne Vertauschungen in isetracht zu nehunen) $8=2 \cdot 4=1 \cdot 8$.
Wir foxren nuin eine Flluritenscheidung durch.

Fall 1: Die Falateren sind 2 und 4
Ser obdA $p_{3}-1=2, p_{4}-1=4$, also

$$
p_{3}=3 \text { und } p_{4}=5 \text {. }
$$

Fall 2: Die Faktoren sind 1 und 8
Ser add $p_{5}^{-1}=1, p_{4}-1=8$, also

$$
p_{2}=2 \text { and } p_{4}=3
$$

Wegen der isymmetrie durflen wir dre'didA's annchmen, da dre einzzige andere Häglichkeit aur dre Vertauschung von pis wid pu ist.
In Fall 1 erhatten wor $\left(p_{i}, f_{4}\right)=(3,5)$ und in Fall $2\left(\mathrm{Pe}_{2} \mathrm{P}_{4}\right)=(2,3)$. Das zweite Ras kain aber ausgeschlessen werden, da 3 niuht Prim int. Es bleict $\left(P_{s}, P_{4}\right)=(3,5)$, also

$$
\left(P_{4}, P_{2}, P_{3}, P_{4}\right)=(2,5,3,5) .
$$

 quadrupel ist:

$$
\begin{aligned}
& & 2 \cdot 5 \cdot 3.5 & =10(2+3+3+5) \\
\Leftrightarrow & & 6 \cdot 25 & =10 \cdot 15 \\
\Leftrightarrow & & 150 & =150
\end{aligned}
$$

Fodgoch erfüllen wie berïts behauptet genau alle Permutationen von

$$
\left(p_{1}, p_{4}, P_{3}, P_{4}\right)=(2,3,5,5)
$$

die Gleichung G).
17. $\alpha W M B$ - A4

Wir defoniveren:
$M=$ Schnittpunlt von x-und y-Achse
$A=\operatorname{Der}$ Echpunist des Dreiechs auf x-Achrie
$C=\operatorname{Der}$ Eckpunkt auf y-Achse
$B=$ Der dritte Punlet des Iraiechus (akso der im 4. Muadrantin)
$D=$ schritipunict von x-Achse und $[B]$
$E=$ Schnirtfpunlet von y-Achse und $[A B]$

$$
\begin{aligned}
& a:=|M D| \\
& h_{L}=|M C|
\end{aligned}
$$

$F\left(. . .{ }^{\prime}\right)=$ die Fiache vom Polygon '...'
$F=$ obtfulfpuntat von B auf x-Achise
Nach Volaussetzung git

$$
F(\triangle M O C): F(\triangle A M C): F(\triangle A E M)=1: 2: B
$$

Wir betrackiten zuenst

$$
\begin{equation*}
F(\triangle M D C): F(\triangle A M C)=1: 2 \Leftrightarrow 2 F(\triangle M D C)=F(\Delta \Delta M C) \text {. } \tag{1}
\end{equation*}
$$

Daber nutuen wir die bekannte Fomel fur die Dreedresllacie.

Da are x-Achse die y-Achse senldent schncidet, ist [OH] whine auf Gundseite [AM] bzw. $[\mathrm{H} D]$ in $\triangle A M C$ bew, $\triangle M D C$.
In (i) angewendet, folgt

$$
\begin{aligned}
2 \cdot\left(\frac{1}{2} \cdot a \cdot h\right) & =\frac{1}{2} \cdot|A M| \cdot h \\
2 a & =|A M| .
\end{aligned}
$$

Analog betrachten wir $F(\triangle A M C): F(\triangle A E M)=2: 3$.

$$
\begin{aligned}
\frac{3}{2} F(\triangle A M C) & =F(\triangle A E M) \\
\frac{3}{2}\left(\frac{1}{2} \cdot 2 a \cdot h\right) & \left.=\frac{1}{2} \cdot 2 a \cdot \right\rvert\, M E \cdot \\
\frac{3}{2} h & =|M E|
\end{aligned}
$$

Da. $7 A M E=\Varangle A F B=90^{\circ}$ ist $M E \| F B$, war können den Strahlensatz bemitaen!

$$
\begin{align*}
& \frac{|A| H \mid}{\mid M E i}=\frac{\mid A F I}{i F P \mid} \Leftrightarrow \frac{2 a}{3 i 2 n}=\frac{|A D|+|B F|}{|F B 1|} \\
& \Leftrightarrow \frac{4 a}{3 h}=\frac{3 a+10 F_{1}}{1+E_{1}} \tag{2}
\end{align*}
$$

Nan gitt aber auch CMMFR (da CM=ME=y-4chse).

Der istrohlensate lrefat damn

$$
\begin{equation*}
\frac{\mid M O 1}{|C M|}=\frac{\mid N F 1}{\mid F B 1} \Leftrightarrow \frac{a}{n}=\frac{|D F|}{|F B|} . \tag{3}
\end{equation*}
$$

Womn wor nown Gieschung (2) durch (3) disidieren, donn ergibt sich

$$
\begin{aligned}
\frac{4 a}{3 n}: \frac{a}{n} & =\frac{3 a+D A T}{1 D 21}: \frac{1 D F \mid}{1 F B 1} \\
\frac{4}{3} & =\frac{2 a+i L F}{W D F 1} \\
\frac{4}{3}|D F| & =3 a+N F i \\
|D F| & =3 a .
\end{aligned}
$$

In (3) eingesetat schliefitich

$$
\frac{a}{h}=\frac{a_{a}}{|F B|} \Leftrightarrow|F B|=3 h .
$$

Es folgt

$$
\begin{aligned}
F(\triangle A B D) & =\frac{1}{2} \cdot|A D| \cdot|A B| \\
& =\frac{1}{2} \cdot 3 a \cdot B h \\
& =\frac{27}{2} a h .
\end{aligned}
$$

Foigich gitt dam

$$
\begin{aligned}
F(H M E D D) & =F(\triangle A B D)-F(\triangle A E M) \\
& =\frac{27}{2} a h-\frac{1}{2} \cdot 2 a \cdot \frac{3}{2} h \\
& =\frac{27}{2} a h-\frac{3}{2}-a h \\
& =\frac{34}{2} a h \\
& =12 a h .
\end{aligned}
$$

Dementsprechend Rist der Anteil der Dreiechaflǜie F($\triangle A R C)$ Tm 4. Quadranten

$$
\begin{aligned}
& =\frac{\text { Azah }}{\text { 1/2 nowh }+ \text { Ater 2aih }+212 \text { awh }+ \text { H20.h }} \\
& =\quad \frac{12 \mathrm{ah}}{1 \text { Sah }} \\
& = \\
& \frac{4}{5} \text {. }
\end{aligned}
$$

17. LWMB - AS

Bezeichnung: Wir nennen n gut, wern wan for 4,5,…n exinen solchen Term mit Wert 0 erzeugen Kann.

Behauptung: Genour alle $n \geq 0,33(\bmod 4)$ und $n{ }^{2} 4$ sind gat.
Eeweis: Offenstehterch Rest $n=4$ nicht gut. Sei also orn Fogaenden $n>4$. Ferner ases $\left(a_{1}, a_{2}, \cdots, a_{n-3}\right)$ eine Fermutation des Tupels $(4,5, \cdots, n)$.
Ser un gut, darn können wor mach seteen der frechenzerchen foigende Gleichung schraben:

$$
\begin{array}{ll}
a_{1}+a_{2}+\cdots+a_{k}-a_{k n 1}-a_{k+2}-\cdots-a_{n-3} & =0 \\
& a_{1}+a_{2}+\cdots+a_{k} \\
& =a_{k+1}+a_{k+2}+\cdots+a_{n-3} \\
\text { nit } 1 \leq k \leq n-3 . &
\end{array}
$$

Das heift abor die Sunme det Zahken 4,$0 ; \cdots, n$ Nst

$$
\begin{aligned}
4+5+\cdots+n & =a_{1}+a_{2}+\cdots+a_{n-3} \\
& =\left(a_{1}+a_{2}+\cdots+a_{n}\right)+\left(a_{k n+1}+a_{k+2}+\cdots+a_{n-3}\right) \\
& =2\left(a_{n}+a_{2}+\cdots+a_{k}\right)
\end{aligned}
$$

gerade: Die Summe von ganiaen Zahien ist aber genau darm gerade, wern dre Anicahl der wzgeroden Summanolen gorade ist. Wir betrachten

$$
\underbrace{4,5,6,7,8,8,10,11,12,13,14,15,16, \cdots}_{+4} \underbrace{4,14}_{+4}, \underbrace{4,15}_{+4}
$$

Bes 4 'a4feinanderfobenden Zahlen sind genau 2 zahlen wigerade. Insbesondere rest dann dve Panitãt der Anzahl der wngeraden Zahben von $(4,5, \cdots, k)$ zu $(4,5, \cdots, k+4)$ invarionjt, Wir katrachten die Gruppe $5,6,7,8$ als Nopräsentanton - für 1,2,3,0 (mod 4).

Ber $n=5$ kzw. $n=6$ ist dee Anzanl an ungeraden zahlen ungerade. Folguch rist dies aber for alle

$$
\left.\begin{array}{l}
5+4 i \equiv 1(\bmod 4) \\
6+4 i \equiv 2(\bmod 4)
\end{array}\right\} i \in z_{z 0}
$$

, also sind die $n=1,2 \bmod 4)$ richt gut, da die Summe von 4,5,", in ungerade wăre.
Es bleïben olve pestenzielien Rastklaseen $n \equiv 0,3(\bmod 4)$. Aus analogen Gründen wie ber $n \equiv 1,2(\bmod 4)$ ist die summe von $40.5, \cdots$.n $\quad \forall r i \equiv 0,3 \mathrm{mmod} 4$) gerade.

Ser $n \equiv 3$ (mad 4), danvi NT $n+1 \equiv 0$ (med 4) und es ldest sich.

$$
\begin{aligned}
& 4+5+\cdots+(n-1)+n=2 x \\
& 4+5+\cdots+(n-1)+n+(n+1)=2 y
\end{aligned} \quad x_{0} y \in e_{2}=
$$

darstellen. Werm wir zeigen könven, dass man die
Summe $4+5+\cdots+n$ in zwë̀ Summen auffoation kann, daren Wert je x ist, down haiten wir gezent. dass alle $n \equiv 3(\bmod 4)$ gut \sin, da wir darn bá

$$
4+5+\cdots+n=A+B=x+x=2 x \quad(A=B=x)
$$

genaus vor allen zahlen on \mathbb{E} ein Monuzzeichen, in unserem Term setzen. Danh wär der Term

$$
A-B=x-x=0
$$

whe gefordert. Taber sei is die Summe, wo die 4 nicht enthalten 2 RT. (okdA; vor die 4 kamn man nach Aufgabenstellung kein Voratichen setien)
Das Gieiche wollen wir fir $4+5+\cdots+(n+1)$ zeigen. Wir gehen wait der vollstăroligen indulation vor.

Indulationsangang: Dre Klernsten $n \equiv 0,3$ God 4) mit na4 sind 7 und 8. Hier tejlen wir dre Summen so auf: $n=7 \cdot 4+5+6+7=(4+7)+(5+6)$ $n=8: 4+5+6+7+8=(4+5+6)+(t+8)$
(Jre Terme nach Aufeabenstellung vǐren daun

$$
4-5-6+7=0 \text { wnd } 4+5+6-7-8=0 \text {.) }
$$

Indulitionsvorausectaung: Die Summanden Iassen sich so opthen, dass summen $A=\mathbb{B}=x, C=0=y$

$$
\begin{aligned}
& \cdot 4+5+\cdots+(n-1)+n=A+B=2 x \\
& \cdot 4+5+\cdots+n+(n+1)=C+D=2 y
\end{aligned}
$$

entstehen.
Mnetulationsschritt: Wir-fongen beim nächustgrößeren $n=3$ (mod 4) an. (Also $n+4$.)

$$
\begin{aligned}
4+5+\cdots+(n+1)+(n+2)+(n+3)+(n+4) & =2 x+4 n+10 \\
& =2(x+2 n+5)
\end{aligned}
$$

Wor zagen, dass wir Summen mit hert $(x+2 n+5)$ dor. stellen können. Whr nemren drese Summen $A_{\text {nui }} B_{n+1}$. Danis Nst

$$
A_{n+1}=A+(n+1)+(n+4) \text { und } B_{n+1}=B+(n+2)+(n+3)
$$

mit $A=B=x$. Wir kǒnnen also tatcüchlich solche Summen darstellen.
Analog machen wor das för $n \equiv 0(\bmod 4)$.

$$
\begin{aligned}
4+5+\cdots+(n+2)+(n+3)+(n+4)+(n+5) & =2 y+4 n+14 \\
& =2(y+2 n+7)
\end{aligned}
$$

Mrt analggen Deserchnungen C_{n+1}, D_{n+4} git

$$
C_{n+1}=C+(n+2)+(n+5) \text { and } D_{n+1}=C+(n+3)+(n+4)
$$

Lamit rat der Indubrtionsschitt beendet und die - Dehaupting beviesen.

Die Geraden $A \mathbb{B}$ und $C M$ schneiden sich in einem Furlt F. Negen

$$
\begin{aligned}
X F E B & =180^{\circ}-\text { YBEC (Nebemwinkel) } \\
& =180^{\circ}-30^{\circ} \\
& =30^{\circ}
\end{aligned}
$$

$$
\begin{array}{rlrl}
& & \frac{|F A|}{|A M|} & =\frac{|F B|}{|B C|} \\
& & |B C| \\
& & =\frac{|F B|}{|F A|} \\
\Rightarrow A A M \mid & 2 & & =\frac{F B \mid}{|F A|} \tag{1}\\
& & 2 F A \mid & =|F B|
\end{array}
$$

, wober $|B C|=2|A M|$ angewendet worden ist, was gilt, werl $\mid E C I=V A D I$ (Parallelogrammi) und $\left.|A M|=\frac{1}{2} \right\rvert\, A D I$ (M ist Mrtelpunkt von $[A D]$).

Nach Konstruktion giet $|F B|=|F A|+|A B|$, nach (1) gilt aber auch $|\overrightarrow{P B}|=|\mathbb{F} A|+|F A|$.

Folglech gilt

$$
|F A|=|A R| .
$$

Insbesondere Th A dann tateachuch der Nitteypunk von [HB] und danit der Krettelpuntt des Thaleskieres äber $[A B]$. [AB] und [AE] sind je Radion des Keerses, also gilt

$$
|A B|=|A E|
$$

, $\triangle A B E$ ist glendoschenkigg mit Basis lDE].
Wir müssen noch aeigen, dass das der einetge Fall zur GLerchschenkirakeit ist. Sex E' ein beliediger von E verschiedener Pwikt ouf [MC], also Tst auch [BE:] kein dat anf [MC]. Wor beweisen, dass $\triangle A B E$ ' nich glaidhschenkig ist. (mit Basis [BS'])
Angenommen, $\triangle A E^{\prime}$ ser gleichuchenklity mit Bain [fI' dann gälte

$$
|A B|=\left|A E^{\prime}\right| .
$$

 Der kreis unn A inst Rodius |AR| Rit der geometrische ort aller Punlate, dre von A mit vänge IAPl ontfennt sind, E^{\prime} musis also darayf liegen. Dieser kreis schneidet MC aber bereits in F und E wod ein Kreis hat hechstens 2 schmithpunlitemit einer Geroden.
Da E' auf DHC] liegt und von F und E ver schïeden π ist, kann as nicht ouf dem Vireis liegen, es folgt
$|A B| \nmid z\left|A E^{\prime}\right|$.
Der Full des votes ist tatuächlīch dor eineige Fall, für den Gleichschenklizkeit girt.

