
Slice Filtration and K-Theory

QI ZHU

23 October 2025

Abstract

Much of motivic homotopy theory follows the Grothendieck’s dream of a category of
motives and relatedly the realization of motivic cohomology. Beilinson and Lichtenstein
conjectured the existence of motivic complexes realizing motivic cohomology and a number
of desired properties.

To arrive at this story we will follow lectures notes from Bachmann [Bac21] and construct a
motivic spectrum KGL representing it (homotopy) K-theory. Then, we give an axiomatic
approach to slice filtrations and specialize to Voevodsky’s slice filtration. This will allow us
to give an ad hoc definition of the motivic cohomology spectrum HZ. With it, we will then
discuss a number of historical results about motivic cohomology which were catalystic to
the development of motivic homotopy theory.

This is talk 2 given at the Motivic Homotopy Theory Seminar in Bonn, WiSe 2025/26.
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Qi Zhu Slice Filtration and K-Theory

0 Beilinson’s Dream

We all have dreams but your dream is not relevant for this talk.1 Beilison’s dream takes the
center stage.

Motivated by questions about the zeta function ζ as well as Grothendieck’s vision of a category
of motives, Beilinson and Lichtenbaum conjectured the existence of motivic cohomology in
the 80s [BK25, Introduction]. It is lousely supposed to satisfy a number of desiderata, among
others:

(i) It gives rise to an analog of Atiyah-Hirzebruch spectral sequence (2.9).

(ii) It is essentially described by higher Chow groups (3.7).

(iii) There should be a certain range of support (3.9).

(iv) There is a close relation to étale cohomology (3.11).

We will discuss all of those in this talk and therefore see some of the historic motivations for
motivic homotopy theory.

1 Motivic K-Theory Spectrum

1.1 Thomason-Trobaugh K-Theory

Recall that for a ring A one can define its algebraic K-theory as K(A) =
Ä

Projfg,core
A

ägp
. As so

often in algebraic geometry, we can extend this to (nice) schemes.

Theorem 1.1. Let S be a regular Noetherian scheme of finite dimension. Then, there exists a
motivic space K ∈ Spc(S), the so-called Thomason-Trobaugh K-theory such that for every
Spec A ∈ SmS we have K(Spec A) ≃ K(A).

Proof Idea. One can make the assignment F : Smop
S → S , X 7→ K(OX(X)) functorial. The

Thomason-Trobaugh K-theory is K = LmotF.

It remains to show that F → LmotF = K is an equivalence on affines. By working with
localization formulas – namely [Bac21, Theorem 2.21] and the sheafification formula – it suffices
to show that F on is A1-invariant and Nisnevich-local on affine schemes. This translates to
properties of algebraic K-theory, namely A1-invariance K(A[t]) ≃ K(A) and a Nisnevich descent
condition. These are non-trivial properties of the K-theory of regular rings [Bac21, Theorem
2.25].

Recall K(A) ≃ K0(A) × BGL(A)+. This can also be extended to schemes.

Construction 1.2. There are presheaves

GLn : Smop
S → Grp, X 7→ GLn(OX(X)) and GL = colim

n
GLn .

Taking classifying spaces sectionwise yields BGL ∈ PSh(SmS).

Fact 1.3 ([Bac21, Theorem 2.28]). Let S be a regular Noetherian scheme of finite dimension.
Then,

K ≃ Lmot(Z × BGL) ∈ Spc(S).
1Sorry.
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1.2 Algebraic K-Theory Spectrum

Recall from Talk 1 that SH(S) ≃ lim
Å
· · ·

Ω
P1−−→ Spc(S)

Ω
P1−−→ Spc(S)

ã
. We want to construct a

motivic analog of KU, i.e. a motivic spectrum KGL representing algebraic K-theory. To do this
we first construct the representing motivic spaces.

Construction 1.4. Let X be an S-scheme. Denote by Vect(X) the 1-category of vector bundles
on X. Then,2

K(Vect(X)) =
(
Vect(X)⊕,core)gp

is the direct sum K-theory of X.

Lemma 1.5. Let S be a regular Noetherian scheme of finite dimension. Then, K ≃ LmotK(Vect(−)).

Proof. By the Serre-Swan theorem, there is a symmetric monoidal functor Projfg
OX(X) → Vect(X)

which is an equivalence on affines. In particular, this induces a map

K(O−(−)) → K(Vect(−))

in PSh(SmS) which is an equivalence on affines. So this is a Zariski equivalence. Thus,

K ≃ LmotK(O−(−)) ≃ LmotLZarK(O−(−)) ≃ LmotLZarK(Vect(−)) ≃ LmotK(Vect(−))

where we use LmotLZar ≃ Lmot which follows from the Nisnevich topology being finer than the
Zariski topology.

Remark 1.6. The definition of K via the direct sum K-theory is more general than the Thomason-
Trobaugh K-theory – it doesn’t require these regularity conditions on S.

Observation 1.7. The construction of K(Vect(X)) was naturally as a functor to CGrp which in
particular forgets to S∗. In other words, we can obtain natural basepoints via 0 ∈ K(Vect(X)),
so we obtain lifts K(Vect(−)) ∈ PSh(SmS)∗ and LmotK(Vect(−)) ∈ Spc(S)∗.

Construction 1.8. Consider the tautological line bundle γ = OP1(−1) ∈ Vect(P1). External ten-
sor product of vector bundles yields a natural3 additive functor −⊗γ : Vect(X) → Vect(X×P1)
which induces a map of commutative monoids γ : K(Vect(X)) → K(Vect(X × P1)). Similarly,
there is a map 1 : K(Vect(X)) → K(Vect(X × P1)) for the trivial line bundle 1 ∈ Vect(P1). Since
K(Vect(X)) is grouplike, we can form the difference γ − 1.

The following is a motivic version of Bott periodicity.

Theorem 1.9 (Motivic Bott Periodicity).

(i) The map γ − 1 assembles into a map

γ − 1 : K(Vect(−)) → ΩP1 K(Vect(−))

in PSh(SmS)∗.

(ii) The induced map

γ − 1 : LmotK(Vect(−)) → LmotΩP1 K(Vect(−)) → ΩP1 LmotK(Vect(−))

is an equivalence.
2We perform everything in Cat∞.
3Note that here naturality is still 1-categorical and hence can be checked by hand.
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Proof.

(i) In 1.8 we constructed a map4

K(Vect(−)) → ΩP1
+

K(Vect(−))

in PSh(SmS)∗ which by adjunction corresponds to a map P1
+ ⊗K(Vect(−)) → K(Vect(−)).

We want to produce a map P1 ⊗ K(Vect(−)) → K(Vect(−)). Via the cofiber sequence
∗+ → P1

+ → P1, we need to show that the composite

K(Vect(−)) ≃ ∗+ ⊗ K(Vect(−)) P1
+ ⊗ K(Vect(−)) K(Vect(−))

is nullhomotopic. But this is induced by the restriction of γ − 1 to ∗ = S which is 0 since
γ|S = 1 is the trivial bundle. Adjoining again, we have successfully constructed a map
K(Vect(−)) → ΩP1 K(Vect(−)).

(ii) We only discuss this in the case S is Noetherian, regular and of finite-dimensional, al-
though this is true in general [Bac21, Footnote 12]. Then, by 1.5 this is the statement
K(X) ≃ K(X+ ∧ P1) for Thomason-Trobaugh K-theory. This follows from the so-called
projective bundle formula [Wei13, Theorem V.1.5].5

Mimicking the topological counterpart, we define:

Definition 1.10. The (motivic) algebraic K-theory spectrum is the object

KGL = KGLS = ((K, K, · · · ); γ − 1 : K → ΩP1 K) ∈ SH(S)

where we write K = LmotK(Vect(−)) here for brevity.

Remark 1.11.

(i) So Ω∞ KGL ≃ K with which we have constructed a motivic spectrum representing K. In
particular, this recovers algebraic K-theory in case S is regular, Noetherian and of finite
dimension (1.5).

(ii) In general, KGL represents Weibel’s homotopy K-theory KH, an A1-invariant approxi-
mation to K-theory. We need non A1-invariant K-theory to fix this defect and it will be a
focus towards the end of this seminar.

Remark 1.12. Essentially since everything worked analogous to the topological counterpart one
deduces that the complex Betti realization is BeC KGLC ≃ KU [Ban05, Lemma 4.23]. It turns out
that BeR KGL ≃ 0 as opposed to BeR KGL ≃ KO, answering a question from Thomas during
the talk [Ban05, Lemma 4.24].

Corollary 1.13.

(i) Let n ∈ Z, then Σ2n,n KGL ≃ KGL.

(ii) Let S be regular, Noetherian and finite-dimensional. For X ∈ SmS we have

[Σp,qΣ∞
+X, KGLS] ∼=

®
Kp−2q(X) p ≥ 2q,
0 else.

4That evaluation on −× P1 corresponds to ΩP1
+

follows via a Yoneda argument.
5I think you use that the cofiber sequence P1 → X × P1 → X+ ∧ P1 induces a fiber sequence on K-theory by the

Yoneda Lemma. Then, K•(X × P1) = K•(P1
X) ∼= K•(X)[z]/z2 by the projective bundle formula. This z part is killed

by K(P1).
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Proof.

(i) We use SH(S) ≃ lim
Å
· · ·

Ω
P1−−→ Spc(S)

Ω
P1−−→ Spc(S)

ã
. By motivic Bott periodicity (1.9)

both Σ2n,n KGL and KGL are given by (· · · , K, K).

(ii) By Bott periodicity from (a), we can shift so far to assume q = 0. If p ≥ 0, then we use
adjunctions and the Yoneda Lemma to compute

[Σp,0Σ∞
+X, KGLS] ∼= [Σ∞(Sp ∧ X+), KGLS] ∼= [Sp ∧ X+, K]∗ ∼= Kp(X).

On the other hand,

[Σ−p,0Σ∞
+X, KGLS] ∼= [Σp,pΣ∞

+X, Σ2p,p KGLS] ∼= [G∧p
m ∧ X+, K]∗.

Now, there is a cofiber sequence

X+ (G×p
m × X)+ G

∧p
m ∧ X+

in Spc(S)∗.6 Now, let us only consider p = 1, for p ≥ 2 we argue by induction. In that
case, we obtain an exact sequence

K1(Gm × X) K1(X) [Gm ∧ X+, K]∗ K0(Gm × X) K0(X)∼

where the first arrow is surjective and the last arrow is an isomorphism by Bass’ fundamental
theorem. Thus, the middle term must be 0 by exactness.

In particular, for X = S we have πp,q KGLS
∼=
®

Kp−2q(S) p ≥ 2q,
0 else.

2 The Slice Filtration

We know wish to construct a motivic version of the Whitehead filtration.

2.1 Axiomatic Approach to Slice Filtrations

Due to the bigrading on motivic spectra, there are multiple imaginable filtrations that generalize
the Whitehead filtration. As such, we will begin by giving a general procedure for such
constructions. Let me introduce the following ad hoc name. Drew calls this slice filtration
[Hea19, Definition 2.1].

Definition 2.1 ([GRSOsr12, Section 2.1]). Let C ∈ CAlg(PrL
st), compactly generated by a set of

objects T . Let {Ci}i∈Z be a family of full subcategories of C . Then, {Ci}i∈Z is a slice setup of C
if the following conditions are satisfied.

(i) For i ∈ Z we have Ci+1 ⊆ Ci.

(ii) Each Ci is generated under colimits and extensions by a set of compact objects Ki.

(iii) We have 1 ∈ C0.

6If we omit the added basepoints of the first two terms, then this is a cofiber sequence in Spc(S).
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(iv) Each t ∈ T is contained in some Ci.

(v) If c0 ∈ C0 and cn ∈ Cn, then c0 ⊗ cn ∈ Cn.

Observation 2.2. Let iq : Cq ↪→ C . Since it is closed under colimits, it admits a right adjoint
rq : C → Cq. We put fq = iq ◦ rq : C → C .

Definition 2.3. Let C ∈ CAlg(PrL
st) be equipped with a slice setup and c ∈ C . We wish to

construct a map fq+1c → fqc. By adjunction, it corresponds to a map fq+1c → c which can be
taken as the counit of iq+1 ⊣ rq+1. Then, we obtain a filtration

· · · f1c f0c f−1c · · · c

s1c s0c s−1c

is the slice tower with slices snc = cofib( fn+1c → fnc).

In the definition of slice setups (2.1) the conditions (i), (ii) are to get the filtration running,
condition (iii) is in some sense a normalization condition, condition (iv) ensures that the
induced slice filtrations are exhaustive and condition (v) gives some good compatibilities with
multiplicative structures [Hea19, Section 2].

Example 2.4.

(i) For C = Sp with Kq = {Sm : m ≥ q} leading to Cq ≃ Sp≥q yields the classical Whitehead
tower in Sp.

(ii) Let Kq = {Σa,bΣ∞
+X : X ∈ SmS, b ≥ q} ⊆ SH(S). We denote by Σq,qSH(S)eff ⊆ SH(S) be

the localizing subcategory generated by Kq. Then, the filtration

· · · Σq+1,q+1SH(S)eff Σq,qSH(S)eff · · ·

defines a slice setup. Associated to it is (Voevodsky’s) slice filtration.

By construction, Σq,qSH(S)eff ≃ Σq,q(Σ0,0SH(S)eff). We also write SH(S)eff = Σ0,0SH(S)eff.

Remark 2.5. For the motivic slice filtration you can check fq ≃ Σq,q f0Σ−q,−q : SH(S) → SH(S)
explicitly, following Bachmann [Bac21, Exercise 3.4].

Remark 2.6. This is not the focus of the talk but certainly the axiomatic construction leads to
numerous additional interesting filtration.

(i) Taking Kq = {Σq+i,iΣ∞
+X : X ∈ SmS, i ∈ Z} ⊆ SH(S) yields the homotopy t-structure.

(ii) Taking Kq = {Σ2a,aΣ∞
+X : X ∈ SmS, a ≥ q} ⊆ SH(S) we obtain the very effective slice

filtration. There are also cellular versions of the slice and very effective slice filtrations
[Hea19, Section 4].

(iii) In SpC2 we define the following slice cells:

• S2q,qσ of dimension 2q,
• S2q−1,qσ of dimension 2q − 1,
• Sq ⊗ (C2)+ of dimension q.

Take PqSpC2 ⊆ SpC2 be the full subcategory generated under extensions and colimits of
slice cells of dimension ≥ q. This gives rise to the Hill-Hopkins-Ravenel slice filtration
for SpC2 . Ignoring cells of the second form gives Ullman’s regular slice filtration. See
[Hea19, Section 5.2]. There is also a version for more general G – on the other hand, C2
seems fitting in the context of motivic homotopy theory which was also the purpose of
[Hea19].
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2.2 Motivic Examples

Definition 2.7.

(i) The effective algebraic K-theory spectrum is the motivic spectrum kgl = f0 KGL.

(ii) The motivic cohomology spectrum is the motivic spectrum HZ = s0 KGL.

Remark 2.8. The first definition of motivic cohomology is due to Voevodsky in the mid 90s
as certain derived functors of so-called motivic complexes of sheaves Z(q), realizing Beilinson’s
dream. Afterwards, one may ask for alternative descriptions of this object. It was Voevodsky’s
first conjecture about his slice filtration [Voe02b, Conjecture 1] that s0 KGL is one such candidate.
Here are some other ways of producing HZ over perfect fields.

(i) Classically singular chains defines a right adjoint i∗ : Sp → Ch(Ab) and we can define
HZ = i∗i∗S. Motivically, one can mimic this construction by replacing Sp with SH(k) and
Ch(Ab) by the stable ∞-category of motives DM(k).

(ii) Classically, one can construct HZ as an infinite loop space via Eilenberg-MacLane spaces
which can be viewed as SP∞(Sn) via the Dold-Thom theorem. This also be realized
motivically over characteristic 0, i.e. one writes out a sequential P1-spectrum via Eilenberg
MacLane spaces realized through symmetric products.

More naively attempting to take Eilenberg-MacLane objects in the ∞-topos ShNis(Smk)
and then applying LA1 does not work – this only gives an S1-spectrum and not an P1-
spectrum.

(iii) Classically, HZ ≃ τ≤0S ≃ π0S. Motivically, HZ ≃ s01 is one of Voevodsky’s original
conjectures about his slice filtration which was shown by Levine. In fact, this combined
with another conjecture, also proved by Levine, yields the first conjecture [Voe02c, Lev08].

Remark 2.9. The spectral associated to the slice filtration of KGL is a motivic version of the
Atiyah-Hirzebruch spectral sequence [BL99, Voe02c], namely for X ∈ Smk there is a strongly
convergent spectral sequence

Ep,q
2 = HZp−q,−q(X) ⇒ K−p−q(X).

This is the one of the starting points of Hahn-Raksit-Wilson’s even filtration and the related
motivic filtrations [HRW24].

Lemma 2.10. There are equivalences fn KGL ≃ Σ2n,n kgl and sn KGL ≃ Σ2n,nHZ.

Proof. Via 2.5 we compute

fn KGL = Σn,n f0Σ−n,−n KGL

≃ Σ2n,nΣ−n,0 f0Σ−n,−n KGL

≃ Σ2n,n f0Σ−n,0Σ−n,−n KGL

≃ Σ2n,n f0 KGL

= Σ2n,n kgl .

and

sn KGL = cofib( fn+1 KGL → fn KGL)

≃ cofib(Σ2(n+1),n+1 kgl → Σ2n,n kgl)

≃ Σ2n,n cofib(Σ2,1 kgl → kgl)

≃ Σ2n,n cofib( f1 KGL → f0 KGL)

= Σ2n,nHZ.
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3 Motivic Cohomology & Historic Theorems

3.1 Motivic Cohomology Groups

Much of motivic homotopy theory was developed to understand motivic cohomology. Let us
introduce some notation before discussing a number of results in the field.

Definition 3.1. Let E ∈ SH(S) and X ∈ SmS, then Ep,q(X) = [Σ∞
+X, Σp,qE] is the bigraded

cohomology theory represented by E.

Remark 3.2. So πp,qE ∼= [Σp,qΣ∞
+S, E] ∼= E−p,−q(S).

Definition 3.3. The bigraded cohomology theory represented by HZ is called motivic coho-
mology and is denoted by

Hp,q(X) = Hp,q(X; Z) = Hp(X; Z(q)) = HZp,q(X).

The cohomology theory associated to HZ/n is also called motivic cohomology.

3.2 Higher Chow Groups

We first construct an algebro-geometric version of singular homology.

Construction 3.4 (Bloch). Let X ∈ SmS.

(i) We write Zd(X) = Z{x ∈ X : codim({x} ⊆ X) = d ⇐⇒ dim OX,x = d}.

(ii) If i : Y ↪→ X is a closed immersion, then c = ∑n anxn ∈ Zd(X) is in good position with
respect to i if the components of Y∩{xn} have codimension ≥ d on Y for every n. We write
Zd(X)i ⊆ Zd(X) for such cycles. One can construct a pullback map i∗ : Zd(X)i → Zd(Y)
[MVW06, Definition 17A.6].

(iii) Let zd(X, n) ⊆ Zd(X × ∆n) consists of those cycles in good position with respect to all faces
X × ∆i ⊆ X × ∆n. Then, we put

∂n =
n

∑
i=0

(−1)id∗i : zd(X, n) → zd(X, n − 1).

This yields a chain complex and we write CHd(X, n) = Hn(zd(X, •), ∂) for the higher Chow
groups.

Observation 3.5. Flat maps preserve codimensions of subschemes [Bac21, Remark 4.13], so
it induces pullback maps on zd which descends to pullbacks of higher Chow groups CHd. In
other words, CHd(−, n) is contravariantly functorial in flat maps.

Remark 3.6. This generalizes classical Chow groups CHd(X) ∼= CHd(X, 0) [Bac21, Example
4.11].

There are certainly many exciting things to be said about CHd [Bac21, Section 4.3, 4.4] but we
will focus on the connection to motivic cohomology.

Theorem 3.7 ([Voe02a]). Let X ∈ Smk and p, q ∈ Z. Then, there are natural isomorphisms

Hp,q(X) ∼= CHq(X, 2q − p).

This paper [Voe02a] is a 5-page paper with 100 citations!
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Remark 3.8. Besides connecting two seemingly disjoint objects, we can extract many interesting
consequences.

(i) We have argued that CHd(−, n) is functorial in flat maps (3.5(ii)) but motivic cohomology
Hp,q(−) is functorial in all maps of schemes, so this functoriality transfers to CHd(−, n).

(ii) Since Hp,q(−) is represented by a motivic spectrum, we deduce that CHd(−, n) is A1-
invariant and satisfies Nisnevich descent.

(iii) By construction, CHd(X, n) = 0 for n < 0. Thus, Hp,q(X) ∼= CHq(X, 2q − p) = 0 for p > 2q.

This result also allows us to compute weight 0 and weight 1 motivic cohomology after further
higher Chow group computations [Bac21, Exercise 4.2, Theorem 4.14]. One obtains

H•,0(X) ∼= Zπ0X[0] and Hp,1(X) ∼=


Pic(X) p = 2,
OX(X)× p = 1,
0 else.

Conjecture 3.9 (Beilinson-Soulé Vanishing Conjecture). Is Hp,q(X) ∼= 0 for p < 0?

3.3 Bloch-Kato Conjecture

Let ℓ be an integer invertible in k. The Kummer exact sequence yields a connecting homomor-
phism ∂ : k× → H1

ét(k, µℓ). Very briefly, via multiplicativity of étale cohomology, the definition
of Milnor K-theory (with Artin reciprocity) and ℓ-torsion of H•

ét(k, µ⊗•
ℓ ), this induces a map

k× ⊗ · · · ⊗ k× Hn
ét(k, µ⊗n

ℓ )

KM
n (k)

KM
n (k)/ℓ

∂n

∂n

∂n

the so-called Galois symbol or norm residue map.

Theorem 3.10 (Norm Residue Theorem/(Motivic) Bloch-Kato Conjecture). Let ℓ be an integer
invertible in k. The map ∂n : KM

n (k)/ℓ → Hn
ét(k, µ⊗n

ℓ ) is an isomorphism.

For ℓ = 2 this was first conjectured by Milnor and as such is the Milnor conjecture. For n = 2 this
is the Merkurjev-Suslin theorem, as this case was first proven by them and the first major advance
in the resolution of this theorem. Voevodsky first proved the Milnor conjecture which earned
him a fields medal and he later went on to prove the entire theorem with ideas from Rost.

Theorem 3.11 (Beilinson-Lichtenbaum Conjecture, Rost-Voevodsky). Let X ∈ Smk and ℓ ∈ Z

be invertible in k. Then, Hp,q(X, Z/ℓ) ∼= Hp
ét(X, µ

⊗q
ℓ ) for p ≤ q.

This implies the norm residue theorem. Indeed, we first mention:

Theorem 3.12 (Nesterenko-Suslin ’90, Totaro ’92). We have CHd(k, n) ∼=
®

0 n < d,
KM

d (k) n = d.

So combining this result (3.12) with Levine’s comparison of Hp,q and CHd (see 3.7) we see that
the Milnor K-group term from the norm residue theorem (3.10) is identified with the motivic
cohomology term from the Beilinson-Lichtenbaum conjecture (3.11).
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Combining the Bloch-Kato conjecture with the motivic Atiyah-Hirzebruch spectral sequence
also gave the resolution of the Quillen-Lichtenbaum conjecture which related étale cohomology
to algebraic K-theory.

The resolution of this conjecture was a huge leap in the development of motivic homotopy
theory. It required motivic versions of Spanier-Whitehead duality and the Steenrod algebra.
Especially the latter is a focus point of this seminar.
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