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Abstract

These are my (live) TeX’d notes for the motivic homotopy theory seminar in Bonn, WiSe
2025/26. The abstract is:

The goal of motivic homotopy theory, as introduced by Morel and Voevodsky, is to bring
homotopical techniques into the world of algebraic geometry. The fundamental idea is
to replace manifolds by smooth schemes over a base, so that the affine line A1 plays the
role of the interval in usual homotopy theory. We aim to give the participant a feel for
this category by first discussing Hoyois’ proof of the Hopkins–Morel isomorphism. This
passes through several motivic versions of fundamental homotopical constructions such
as the identification of the Steenrod algebra for mod p cohomology and the Landweber
exact functor theorem, and provides a strong connection between algebraic cobordism and
motivic cohomology1. In the second half of the seminar2, we discuss a more recent take
on the theory of motivic spectra that in fact does away with the A1-homotopy invariance
entirely. This compromise is motivated by compatibility with algebraic K-theory, and we
will see how to set up a motivic analogue of Snaith’s theorem that provides a universal
property for algebraic K-theory over all base schemes, while passing through a discussion
of orientations in this new setting.

My notation and language is not always consistent with the speakers’ choices. I also
occassionally added some parts which were not included in the actual talks; such parts will
always be indicated by a star like Lemma*.

Feel free to send me feedback. :-)
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1 Setting Up (Fabio Neugebauer)

Let S be a scheme, the base scheme. It’ll be useful to assume some properties like Noetherianity, TALK 1
16.10.2025finite-dimensionality, etc. throughout the talk, so let us just already do it here. Let SmS denote

the category of smooth schemes of finite type over S. The smoothness is particularly relevant
for the purity theorem but one can also arrive at the same result by changing not only SmS but
also the Grothendieck topology that we will introduce.

1.1 Setup of Motivic Spaces

Let’s compare motivic homotopy theory to classical homotopy theory.

Mfld S Sp

SmS Spc(S) SH(S)

coherently contract R1
invert S1

coherently contract A1
S invert P1

Let’s make this precise. We wish to define Spc(S) = LA1 Sh?(SmS) as the ∞-category of motivic
spaces.

We need to take sheaves because SmS behaves too badly. What Grothendieck topology do
we take? One could try the Zariski topology but this has too few covers. One could try the
étale topology which has enough geometry but infinite cohomological dimension. There is
something in between:

Zar < Nisnevich < étale

In the Nisnevich topology the upshot is that descent is essentially some version of excision. We
will not formally define the Nisnevich topology but will state a characterization of Nisnevich
sheaves:

Theorem 1.1. A presheaf F : Smop
S → S is a Nisnevich sheaf if and only if:

(i) F(∅) ≃ ∗,

(ii) Let

W V

U X

⌟
p

i

be a Nisnevich square in SmS, i.e. it is cartesian, i is an open immersion, p is étale and
p−1(X−U)→ X−U is an isomorphism. Then, the square

F(X) F(V)

F(U) F(W)

is a pullback square.

Corollary 1.2. The Yoneda embedding SmS ↪→ ShNis(SmS) sends Nisnevich squares to pushouts.

Proof. By the Yoneda Lemma the pullback square in 1.1(ii) becomes
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MapSh(SmS)(よX, F) MapSh(SmS)(よV, F)

MapSh(SmS)(よU, F) MapSh(SmS)(よW, F)

⌟

for all F ∈ Sh(SmS). Thus,よX ≃よU ⨿よWよV as desired.

Definition 1.3. A presheaf F ∈ PSh(SmS) is called A1-invariant if for all X ∈ SmS the map

pr∗ : F(X)→ F(X×A1)

is an equivalence.

Definition 1.4. We denote by Spc(S) ⊆ PSh(SmS) is the full subcategory of A1-invariant
Nisnevich sheaves. This is the ∞-category of motivic spaces.

Proposition 1.5. The inclusion Spc(S) → PSh(SmS) preserves filtered colimits and admits a
finite product-preserving left adjoint

Lmot = colim
n

(LNis → LA1 LNis → · · · )

with LA1 F ≃ colim[n]∈∆op F(X× ∆n).

Proof. These exist for formal reasons but you need the explicit formula to prove the finite
product-preservation. Essentially, the key step is to use that sifted colimits commute with finite
limits in S .

Remark 1.6. This functor Lmot is not left-exact. In fact, Spc(S) is not an ∞-topos.

Definition 1.7. A map H : X×A1 → Y in SmS is called A1-homotopy.

For any a : ∗Spc(S) ≃ S → A1 we get Ha : X → X ×A1 H−→ Y and for all a, b ∈ A1(S) we have
Ha ≃ Hb in Spc(S). The first map is always an equivalence as a section of pr : X×A1 → X, in
particular it always has the same inverse, so it is always the same map (up to equivalence).

1.2 Motivic Spheres

Definition 1.8. We write Gm for the pointed S-scheme (A1 − {0}, 1).

Observation 1.9. The squares

Gm ×Gm Gm ×A1 Gm A1

A1 ×Gm A2 − {0} A1 P1

⌟ ⌟

are Nisnevich squares. So we obtain pushout squares

Gm ×Gm Gm Gm ∗

Gm A2 − {0} ∗ P1
⌜ ⌜

in Spc(S) after contracting A1. We deduce A2 − {0} ≃ Σ(Gm ∧Gm) and P1 ≃ ΣGm in Spc(S)∗.
For the first one, you still need to play around a little bit.
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Definition 1.10. For integers d ≥ j ≥ 0 the motivic sphere are Sd,j = Sd−j ∧G
j
m ∈ Spc(S)∗.

So P1 ≃ S2,1 and A2 − {0} ≃ S3,2 by 1.9.

Proposition 1.11. There is an equivalence S2n−1,n ≃ An − {0}.

In particular,

S2n,n ≃ S1 ∧ S2n−1,n ≃ cofib(An − {0} → An) = An/(An − {0}),

i.e. contract the boundary of a disc which should be a sphere.

1.3 Base Change

Let f : T → S be a map of schemes. We get a functor SmS → SmT, X 7→ T ×S X which gives
rise to an adjunction

PSh(SmS) PSh(SmT)
f ∗

f∗

by left Kan extension. This passes to motivic spaces:

Spc(S) Spc(T)
f ∗

f∗

such that

Spc(S) Spc(T)

PSh(SmS) PSh(SmT)

f ∗

Lmot

f ∗

Lmot

commutes (which is checked on right adjoints).

Remark 1.12. The functor f ∗ preserves finite products.

Proof. It preserves finite products on the scheme level and so also on presheaves by abstract
nonsense [Lur09, Proposition 6.1.5.2]. Since the motivic localizations preserve products, this
also descends to motivic spaces.

Proposition 1.13 (Nisnevich Separation). Let { fi : Ui → S}i be a Nisnevich cover. Then, the
family { f ∗i : Spc(S)→ Spc(Ui)}i is conservative.

1.4 Motivic Thom Spaces

The concept of Thom spaces allows you to study vector bundles despite having contracted A1.

Definition 1.14.

(i) Let VectS denote the 1-category of vector bundles over S and isomorphisms.

(ii) The Thom space functor is Th : VectS → Spc(S)∗, E 7→ E/(E− {0}).

Or rather: Th(E) ≃ E/(E− X).

Proposition 1.15. The functor Th is symmetric monoidal.
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Proof. We begin by factoring Th into lax symmetric monoidal functors.3

VectS Ar(SmS)Day Ar(Spc(S))Day Spc(S)∗

E (E− {0} → E)

cofib

Now symmetric monoidality is a property, so it suffices to check for E, E′ ∈ VectS that the map

Th(E)∧ Th(E′)→ Th(E ∧ E′)

is an equivalence. WLOG, E, E′ are trivial by Nisnevich separation in which case we get

(A1/A1 − {0})∧n ≃ (S2,1)∧n ≃ S2n,n ≃ An/An − {0}.

1.5 Motivic Spectra

Definition 1.16. The category (SH(S),⊗) is the initial presentably symmetric monoidal category
under Spc(S)∗, i.e. it comes with a functor Σ∞ : Spc(S)∗ → SH(S), on which tensoring with
Sd,j = Σ∞Sd,j defines an equivalence Σd,j = Sd,j ⊗− : SH(S)→ SH(S).

Existence on CAlg(PrL)C / with inverting some compact objects is a formal thing by Robalo
[Rob13].

Construction 1.17. Let f : T → S be a map of schemes. Then, we obtain a symmetric monoidal
left adjoint sitting in the square

Spc(S)∗ Spc(T)

SH(S) SH(T)

f ∗

Σ∞ Σ∞

∃! f ∗

by definition of SH(S).

Remark 1.18.

(i) Since Σ1,0 = Σ we get that SH(S) is stable.

(ii) It suffices to invert P1 ≃ S1 ∧Gm.

Theorem 1.19. Let

Spc(S)∗[(P1)−1] = colim
Å

Spc(S)∗
(−)∧P1

−−−−→ Spc(S)∗
(−)∧P1

−−−−→ Spc(S)∗ → · · ·
ã

in PrL.4 Then, this is an idempotent algebra in ModSpc(S)∗(PrL). Then, the preferred map
Spc(S)∗[(P1)−1]→ SH(S) is an equivalence in CAlg(PrL).

Proof. This is a categorification of the group completion theorem. Robalo proved that we need
to check that P1 is symmetric, i.e. the cyclic permutation (1 2 3) : (P1)∧3 → (P1)∧3 is equivalent
to the identity [Rob13].

We use (P1)∧3 ≃ Th(A3). We factor the matrix for (1 2 3) into elementary matrices E(a) over Z

with a ∈ Z which is possible since det(1 2 3) = 1. Then,

A1 ×A3 → A3, (t, x) 7→ E(ta)(X)

is a homotopy to the identity.
3Here, [1] obtains the monoidal structure via max.
4I.e. you take the limit of the right adjoints.
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1.6 Motivic Thom Spectrum

The symmetric monoidal composite

VectS Spc(S)∗ SH(S).Th Σ∞

sends all E ∈ VectS to ⊗-invertible objects. On trivial bundles those are spheres where it is true.
In general we check this locally by Nisnevich separation. So it factors the group completion

J : K(S) = (VectS)gp → SH(S)

as a symmetric monoidal functor. Via K(S)→ Z we can pick out the rank and define K(S)0.

Definition 1.20. The motivic Thom spectrum is

MGL = colim(J : K(S)0 → SH(S)) ∈ CAlg(SH(S)).

Remark* 1.21.

(i) This is a bit inaccurate, it only has Thom isomorphisms for bundles over S instead of over all
S-schemes. One needs some more parametrizations to make this work properly.

Indeed, let us recall the classical setting [ACB19, Proposition 3.16]. Say some ring spectrum E is
MU-oriented, so the composite BU→ Pic S→ Pic E is nullhomotopic. Any virtual degree 0 vector
bundle is represented by a map f : X → BU. So the composite

X BU Pic S Pic E
f J IndE

S

is nullhomotopic as well. This gives

E•(Th( f )) ∼= E•(Th( f )⊗ E) ∼= E•
Ä

colim(IndE
S ◦J ◦ f )

ä ∼= E•(X),

i.e. the Thom isomorphism. The first isomorphism is by adjunction.

Now the same holds in the motivic setting but K(S)0 are only virtual degree 0 vector bundles over
S. We want vector bundles over arbitrary S-schemes, so we need some notion parametrizing over
S-schemes.

(ii) Here is a more down-to-earth description. Let f : X → S be a smooth S-scheme. Then, there is a
pullback functor f ∗ : SH(S)→ SH(X) essentially by functoriality of Sm/−. It admits a left adjoint
f# : SH(X)→ SH(S). Then, we define

MGLS = colim
f∈SmS

f# colim
Ä

JX : K(X)0 → SH(X)
ä
= colim

f∈SmS
f# ThX(J)

as Voevodsky’s algebraic cobordism spectrum. More information about it is e.g. contained in
[BH21, Section 16].

1.7 Homotopy t-Structure

Definition 1.22. Let X ∈ ShNis(SmS). Then, π0(X ) ∈ Sh(SmS) is defined as the sheafification
of U 7→ π0(X (U)). Similarly, πn(S , x) ∈ Sh(SmS) for (X , x) ∈ Sh(SmS)∗.

Theorem 1.23. Let k be a perfect field. If X ∈ Spc(k)∗, then πi(X ) ∈ Spc(S) (and all its
deloopings) are A1-invariant for i ≥ 1.

Definition 1.24. Let SH(S)≥0 ⊆ SH(S) be the category spanned by

{Σk
Gm

Σ∞
+X : k ∈ Z, X ∈ SmS}

which you close up under extensions and colimits.

6



Qi Zhu Motivic Homotopy Theory

It’s formal to obtain that SH(S)≥0 is the connective part of a t-structure, the homotopy t-
structure.

Theorem 1.25 (Morel). Let k be a field and E ∈ SH(k).

(i) We have E ∈ SH(S)≥d if and only if πp,q(E) = π0(Ω∞Σ−p,−qE) = 0 for all p− q < d.

(ii) We have E ∈ SH(S)≤d if and only if πp,q(E) = 0 for all p− q > d.

There are many interesting t-structures such as the Chow t-structure but this is quite close to
the one on Sp.

Remark 1.26.

(i) For f : S→ T the functor f ∗ : SH(T)→ SH(S) is t-exact.

(ii) The Betti realization functor BeR : SH(R)→ Sp, (X ∈ SmR) 7→ X(R)an is t-exact.

1.8 Stable Stems

Fabio is ending with this because I forced him to. For this part let S = Spec k.

Definition 1.27. The stable stems are πi(S)j =
î
Σ∞Si, Σ∞G

j
m

ó
SH(k)

.

Example 1.28.

(i) Take η : A2 − {0} → P1 which gives [η] ∈ π0(S)−1.5

(ii) For a ∈ k× we have a : ∗ → Gm yielding [a] ∈ π0(S)1.

Theorem 1.29 (Morel). There is an isomorphism π0(S)• ∼= Z⟨[a], [η]⟩/relations = KMW(k)•.

This is Milnor-Witt K-theory and was already defined before this motivic story! We get Milnor
K-theory via KM(k)• = KMW(k)•/[η] which computes K0, K1, K2 of algebraic K-theory.

2 Slice Filtration & K-Theory (Qi Zhu)
TALK 2
23.10.20252.1 Beilinson’s Dream

We all have dreams but your dream is not relevant for this talk.6 Beilison’s dream takes the
center stage.

Motivated by questions about the zeta function ζ as well as Grothendieck’s vision of a category
of motives, Beilinson and Lichtenbaum conjectured the existence of motivic cohomology in
the 80s [BK25, Introduction]. It is lousely supposed to satisfy a number of desiderata, among
others:

(i) It gives rise to an analog of Atiyah-Hirzebruch spectral sequence (2.22).

(ii) It is essentially described by higher Chow groups (2.30).

(iii) There should be a certain range of support (2.32).

(iv) There is a close relation to étale cohomology (2.34).

We will discuss all of those in this talk and therefore see some of the historic motivations for
motivic homotopy theory.

5To see that this is non-trivial, one can for example use Betti realization which gives the classical Hopf map.
6Sorry.
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2.2 Motivic K-Theory Spectrum

2.2.1 Thomason-Trobaugh K-Theory

Recall that for a ring A one can define its algebraic K-theory as K(A) =
Ä

Projfg,core
A

ägp
. As so

often in algebraic geometry, we can extend this to (nice) schemes.

Theorem 2.1. Let S be a regular Noetherian scheme of finite dimension. Then, there exists a
motivic space K ∈ Spc(S), the so-called Thomason-Trobaugh K-theory such that for every
Spec A ∈ SmS we have K(Spec A) ≃ K(A).

Proof Idea. One can make the assignment F : Smop
S → S , X 7→ K(OX(X)) functorial. The

Thomason-Trobaugh K-theory is K = LmotF.

It remains to show that F → LmotF = K is an equivalence on affines. By working with
localization formulas – namely [Bac21, Theorem 2.21] and the sheafification formula – it suffices
to show that F on is A1-invariant and Nisnevich-local on affine schemes. This translates to
properties of algebraic K-theory, namely A1-invariance K(A[t]) ≃ K(A) and a Nisnevich descent
condition. These are non-trivial properties of the K-theory of regular rings [Bac21, Theorem
2.25].

Recall K(A) ≃ K0(A)× BGL(A)+. This can also be extended to schemes.

Construction 2.2. There are presheaves

GLn : Smop
S → Grp, X 7→ GLn(OX(X)) and GL = colim

n
GLn .

Taking classifying spaces sectionwise yields BGL ∈ PSh(SmS).

Fact 2.3 ([Bac21, Theorem 2.28]). Let S be a regular Noetherian scheme of finite dimension.
Then,

K ≃ Lmot(Z× BGL) ∈ Spc(S).

2.2.2 Algebraic K-Theory Spectrum

Recall from Talk 1 that SH(S) ≃ lim
Å
· · ·

Ω
P1−−→ Spc(S)

Ω
P1−−→ Spc(S)

ã
. We want to construct a

motivic analog of KU, i.e. a motivic spectrum KGL representing algebraic K-theory. To do this
we first construct the representing motivic spaces.

Construction 2.4. Let X be an S-scheme. Denote by Vect(X) the 1-category of vector bundles
on X. Then,7

K(Vect(X)) =
(
Vect(X)⊕,core)gp

is the direct sum K-theory of X.

Lemma 2.5. Let S be a regular Noetherian scheme of finite dimension. Then, K ≃ LmotK(Vect(−)).

Proof. By the Serre-Swan theorem, there is a symmetric monoidal functor Projfg
OX(X) → Vect(X)

which is an equivalence on affines. In particular, this induces a map

K(O−(−))→ K(Vect(−))

in PSh(SmS) which is an equivalence on affines. So this is a Zariski equivalence. Thus,

K ≃ LmotK(O−(−)) ≃ LmotLZarK(O−(−)) ≃ LmotLZarK(Vect(−)) ≃ LmotK(Vect(−))

where we use LmotLZar ≃ Lmot which follows from the Nisnevich topology being finer than the
Zariski topology.

7We perform everything in Cat∞.
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Remark 2.6. The definition of K via the direct sum K-theory is more general than the Thomason-
Trobaugh K-theory – it doesn’t require these regularity conditions on S.

Observation 2.7. The construction of K(Vect(X)) was naturally as a functor to CGrp which in
particular forgets to S∗. In other words, we can obtain natural basepoints via 0 ∈ K(Vect(X)),
so we obtain lifts K(Vect(−)) ∈ PSh(SmS)∗ and LmotK(Vect(−)) ∈ Spc(S)∗.

Construction 2.8. Consider the tautological line bundle γ = OP1(−1) ∈ Vect(P1). External ten-
sor product of vector bundles yields a natural8 additive functor−⊗γ : Vect(X)→ Vect(X×P1)
which induces a map of commutative monoids γ : K(Vect(X))→ K(Vect(X×P1)). Similarly,
there is a map 1 : K(Vect(X))→ K(Vect(X×P1)) for the trivial line bundle 1 ∈ Vect(P1). Since
K(Vect(X)) is grouplike, we can form the difference γ− 1.

The following is a motivic version of Bott periodicity.

Theorem 2.9 (Motivic Bott Periodicity).

(i) The map γ− 1 assembles into a map

γ− 1 : K(Vect(−))→ ΩP1 K(Vect(−))

in PSh(SmS)∗.

(ii) The induced map

γ− 1 : LmotK(Vect(−))→ LmotΩP1 K(Vect(−))→ ΩP1 LmotK(Vect(−))

is an equivalence.

Proof.

(i) In 2.8 we constructed a map9

K(Vect(−))→ ΩP1
+

K(Vect(−))

in PSh(SmS)∗ which by adjunction corresponds to a map P1
+⊗K(Vect(−))→ K(Vect(−)).

We want to produce a map P1 ⊗ K(Vect(−)) → K(Vect(−)). Via the cofiber sequence
∗+ → P1

+ → P1, we need to show that the composite

K(Vect(−)) ≃ ∗+ ⊗ K(Vect(−)) P1
+ ⊗ K(Vect(−)) K(Vect(−))

is nullhomotopic. But this is induced by the restriction of γ− 1 to ∗ = S which is 0 since
γ|S = 1 is the trivial bundle. Adjoining again, we have successfully constructed a map
K(Vect(−))→ ΩP1 K(Vect(−)).

(ii) We only discuss this in the case S is Noetherian, regular and of finite-dimensional, al-
though this is true in general [Bac21, Footnote 12]. Then, by 2.5 this is the statement
K(X) ≃ K(X+ ∧P1) for Thomason-Trobaugh K-theory. This follows from the so-called
projective bundle formula [Wei13, Theorem V.1.5].10

8Note that here naturality is still 1-categorical and hence can be checked by hand.
9That evaluation on −×P1 corresponds to ΩP1

+
follows via a Yoneda argument.

10I think you use that the cofiber sequence P1 → X×P1 → X+ ∧P1 induces a fiber sequence on K-theory by the
Yoneda Lemma. Then, K•(X×P1) = K•(P1

X) ∼= K•(X)[z]/z2 by the projective bundle formula. This z part is killed
by K(P1).

9
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Mimicking the topological counterpart, we define:

Definition 2.10. The (motivic) algebraic K-theory spectrum is the object

KGL = KGLS = ((K, K, · · · ); γ− 1 : K → ΩP1 K) ∈ SH(S)

where we write K = LmotK(Vect(−)) here for brevity.

Remark 2.11.

(i) So Ω∞ KGL ≃ K with which we have constructed a motivic spectrum representing K. In
particular, this recovers algebraic K-theory in case S is regular, Noetherian and of finite
dimension (2.5).

(ii) In general, KGL represents Weibel’s homotopy K-theory KH, an A1-invariant approxi-
mation to K-theory. We need non A1-invariant K-theory to fix this defect and it will be a
focus towards the end of this seminar.

Remark 2.12. Essentially since everything worked analogous to the topological counterpart one
deduces that the complex Betti realization is BeC KGLC ≃ KU [Ban05, Lemma 4.23]. It turns out
that BeR KGL ≃ 0 as opposed to BeR KGL ≃ KO, answering a question from Thomas during
the talk [Ban05, Lemma 4.24].

Corollary 2.13.

(i) Let n ∈ Z, then Σ2n,n KGL ≃ KGL.

(ii) Let S be regular, Noetherian and finite-dimensional. For X ∈ SmS we have

[Σp,qΣ∞
+X, KGLS] ∼=

®
Kp−2q(X) p ≥ 2q,
0 else.

Proof.

(i) We use SH(S) ≃ lim
Å
· · ·

Ω
P1−−→ Spc(S)

Ω
P1−−→ Spc(S)

ã
. By motivic Bott periodicity (2.9)

both Σ2n,n KGL and KGL are given by (· · · , K, K).

(ii) By Bott periodicity from (a), we can shift so far to assume q = 0. If p ≥ 0, then we use
adjunctions and the Yoneda Lemma to compute

[Σp,0Σ∞
+X, KGLS] ∼= [Σ∞(Sp ∧ X+), KGLS] ∼= [Sp ∧ X+, K]∗ ∼= Kp(X).

On the other hand,

[Σ−p,0Σ∞
+X, KGLS] ∼= [Σp,pΣ∞

+X, Σ2p,p KGLS] ∼= [G∧p
m ∧ X+, K]∗.

Now, there is a cofiber sequence

X+ (G×p
m × X)+ G

∧p
m ∧ X+

in Spc(S)∗.11 Now, let us only consider p = 1, for p ≥ 2 we argue by induction. In that
case, we obtain an exact sequence

K1(Gm × X) K1(X) [Gm ∧ X+, K]∗ K0(Gm × X) K0(X)∼

where the first arrow is surjective and the last arrow is an isomorphism by Bass’ fundamental
theorem. Thus, the middle term must be 0 by exactness.

In particular, for X = S we have πp,q KGLS
∼=
®

Kp−2q(S) p ≥ 2q,
0 else.

11If we omit the added basepoints of the first two terms, then this is a cofiber sequence in Spc(S).

10
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2.3 The Slice Filtration

We know wish to construct a motivic version of the Whitehead filtration.

2.3.1 Axiomatic Approach to Slice Filtrations

Due to the bigrading on motivic spectra, there are multiple imaginable filtrations that generalize
the Whitehead filtration. As such, we will begin by giving a general procedure for such
constructions. Let me introduce the following ad hoc name. Drew calls this slice filtration
[Hea19, Definition 2.1].

Definition 2.14 ([GRSOsr12, Section 2.1]). Let C ∈ CAlg(PrL
st), compactly generated by a set of

objects T . Let {Ci}i∈Z be a family of full subcategories of C . Then, {Ci}i∈Z is a slice setup of C
if the following conditions are satisfied.

(i) For i ∈ Z we have Ci+1 ⊆ Ci.

(ii) Each Ci is generated under colimits and extensions by a set of compact objects Ki.

(iii) We have 1 ∈ C0.

(iv) Each t ∈ T is contained in some Ci.

(v) If c0 ∈ C0 and cn ∈ Cn, then c0 ⊗ cn ∈ Cn.

Observation 2.15. Let iq : Cq ↪→ C . Since it is closed under colimits, it admits a right adjoint
rq : C → Cq. We put fq = iq ◦ rq : C → C .

Definition 2.16. Let C ∈ CAlg(PrL
st) be equipped with a slice setup and c ∈ C . We wish to

construct a map fq+1c→ fqc. By adjunction, it corresponds to a map fq+1c→ c which can be
taken as the counit of iq+1 ⊣ rq+1. Then, we obtain a filtration

· · · f1c f0c f−1c · · · c

s1c s0c s−1c

is the slice tower with slices snc = cofib( fn+1c→ fnc).

In the definition of slice setups (2.14) the conditions (i), (ii) are to get the filtration running,
condition (iii) is in some sense a normalization condition, condition (iv) ensures that the
induced slice filtrations are exhaustive and condition (v) gives some good compatibilities with
multiplicative structures [Hea19, Section 2].

Example 2.17.

(i) For C = Sp with Kq = {Sm : m ≥ q} leading to Cq ≃ Sp≥q yields the classical Whitehead
tower in Sp.

(ii) Let Kq = {Σa,bΣ∞
+X : X ∈ SmS, b ≥ q} ⊆ SH(S). We denote by Σq,qSH(S)eff ⊆ SH(S) be

the localizing subcategory generated by Kq. Then, the filtration

· · · Σq+1,q+1SH(S)eff Σq,qSH(S)eff · · ·

defines a slice setup. Associated to it is (Voevodsky’s) slice filtration.

By construction, Σq,qSH(S)eff ≃ Σq,q(Σ0,0SH(S)eff). We also write SH(S)eff = Σ0,0SH(S)eff.

11
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Remark 2.18. For the motivic slice filtration you can check fq ≃ Σq,q f0Σ−q,−q : SH(S)→ SH(S)
explicitly, following Bachmann [Bac21, Exercise 3.4].

Remark 2.19. This is not the focus of the talk but certainly the axiomatic construction leads to
numerous additional interesting filtration.

(i) Taking Kq = {Σq+i,iΣ∞
+X : X ∈ SmS, i ∈ Z} ⊆ SH(S) yields the homotopy t-structure.

(ii) Taking Kq = {Σ2a,aΣ∞
+X : X ∈ SmS, a ≥ q} ⊆ SH(S) we obtain the very effective slice

filtration. There are also cellular versions of the slice and very effective slice filtrations
[Hea19, Section 4].

(iii) In SpC2 we define the following slice cells:

• S2q,qσ of dimension 2q,

• S2q−1,qσ of dimension 2q− 1,

• Sq ⊗ (C2)+ of dimension q.

Take PqSpC2 ⊆ SpC2 be the full subcategory generated under extensions and colimits of
slice cells of dimension ≥ q. This gives rise to the Hill-Hopkins-Ravenel slice filtration
for SpC2 . Ignoring cells of the second form gives Ullman’s regular slice filtration. See
[Hea19, Section 5.2]. There is also a version for more general G – on the other hand, C2
seems fitting in the context of motivic homotopy theory which was also the purpose of
[Hea19].

2.3.2 Motivic Examples

Definition 2.20.

(i) The effective algebraic K-theory spectrum is the motivic spectrum kgl = f0 KGL.

(ii) The motivic cohomology spectrum is the motivic spectrum HZ = s0 KGL.

Remark 2.21. The first definition of motivic cohomology is due to Voevodsky in the mid 90s
as certain derived functors of so-called motivic complexes of sheaves Z(q), realizing Beilinson’s
dream. Afterwards, one may ask for alternative descriptions of this object. It was Voevodsky’s
first conjecture about his slice filtration [Voe02b, Conjecture 1] that s0 KGL is one such candidate.
Here are some other ways of producing HZ over perfect fields.

(i) Classically singular chains defines a right adjoint i∗ : Sp → Ch(Ab) and we can define
HZ = i∗i∗S. Motivically, one can mimic this construction by replacing Sp with SH(k) and
Ch(Ab) by the stable ∞-category of motives DM(k).

(ii) Classically, one can construct HZ as an infinite loop space via Eilenberg-MacLane spaces
which can be viewed as SP∞(Sn) via the Dold-Thom theorem. This also be realized
motivically over characteristic 0, i.e. one writes out a sequential P1-spectrum via Eilenberg
MacLane spaces realized through symmetric products.

More naively attempting to take Eilenberg-MacLane objects in the ∞-topos ShNis(Smk)
and then applying LA1 does not work – this only gives an S1-spectrum and not an P1-
spectrum.

(iii) Classically, HZ ≃ τ≤0S ≃ π0S. Motivically, HZ ≃ s01 is one of Voevodsky’s original
conjectures about his slice filtration which was shown by Levine. In fact, this combined
with another conjecture, also proved by Levine, yields the first conjecture [Voe02c, Lev08].

12
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Remark 2.22. The spectral associated to the slice filtration of KGL is a motivic version of the
Atiyah-Hirzebruch spectral sequence [BL99, Voe02c], namely for X ∈ Smk there is a strongly
convergent spectral sequence

Ep,q
2 = HZp−q,−q(X)⇒ K−p−q(X).

This is the one of the starting points of Hahn-Raksit-Wilson’s even filtration and the related
motivic filtrations [HRW24].

Lemma 2.23. There are equivalences fn KGL ≃ Σ2n,n kgl and sn KGL ≃ Σ2n,nHZ.

Proof. Via 2.18 we compute

fn KGL = Σn,n f0Σ−n,−n KGL

≃ Σ2n,nΣ−n,0 f0Σ−n,−n KGL

≃ Σ2n,n f0Σ−n,0Σ−n,−n KGL

≃ Σ2n,n f0 KGL

= Σ2n,n kgl .

and

sn KGL = cofib( fn+1 KGL→ fn KGL)

≃ cofib(Σ2(n+1),n+1 kgl→ Σ2n,n kgl)

≃ Σ2n,n cofib(Σ2,1 kgl→ kgl)

≃ Σ2n,n cofib( f1 KGL→ f0 KGL)

= Σ2n,nHZ.

2.4 Motivic Cohomology & Historic Theorems

2.4.1 Motivic Cohomology Groups

Much of motivic homotopy theory was developed to understand motivic cohomology. Let us
introduce some notation before discussing a number of results in the field.

Definition 2.24. Let E ∈ SH(S) and X ∈ SmS, then Ep,q(X) = [Σ∞
+X, Σp,qE] is the bigraded

cohomology theory represented by E.

Remark 2.25. So πp,qE ∼= [Σp,qΣ∞
+S, E] ∼= E−p,−q(S).

Definition 2.26. The bigraded cohomology theory represented by HZ is called motivic coho-
mology and is denoted by

Hp,q(X) = Hp,q(X; Z) = Hp(X; Z(q)) = HZp,q(X).

The cohomology theory associated to HZ/n is also called motivic cohomology.

2.4.2 Higher Chow Groups

We first construct an algebro-geometric version of singular homology.

Construction 2.27 (Bloch). Let X ∈ SmS.

13
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(i) We write Zd(X) = Z{x ∈ X : codim({x} ⊆ X) = d ⇐⇒ dim OX,x = d}.

(ii) If i : Y ↪→ X is a closed immersion, then c = ∑n anxn ∈ Zd(X) is in good position with
respect to i if the components of Y∩{xn} have codimension≥ d on Y for every n. We write
Zd(X)i ⊆ Zd(X) for such cycles. One can construct a pullback map i∗ : Zd(X)i → Zd(Y)
[MVW06, Definition 17A.6].

(iii) Let zd(X, n) ⊆ Zd(X×∆n) consists of those cycles in good position with respect to all faces
X× ∆i ⊆ X× ∆n. Then, we put

∂n =
n

∑
i=0

(−1)id∗i : zd(X, n)→ zd(X, n− 1).

This yields a chain complex and we write CHd(X, n) = Hn(zd(X, •), ∂) for the higher Chow
groups.

Observation 2.28. Flat maps preserve codimensions of subschemes [Bac21, Remark 4.13], so
it induces pullback maps on zd which descends to pullbacks of higher Chow groups CHd. In
other words, CHd(−, n) is contravariantly functorial in flat maps.

Remark 2.29. This generalizes classical Chow groups CHd(X) ∼= CHd(X, 0) [Bac21, Example
4.11].

There are certainly many exciting things to be said about CHd [Bac21, Section 4.3, 4.4] but we
will focus on the connection to motivic cohomology.

Theorem 2.30 ([Voe02a]). Let X ∈ Smk and p, q ∈ Z. Then, there are natural isomorphisms

Hp,q(X) ∼= CHq(X, 2q− p).

This paper [Voe02a] is a 5-page paper with 100 citations!

Remark 2.31. Besides connecting two seemingly disjoint objects, we can extract many interesting
consequences.

(i) We have argued that CHd(−, n) is functorial in flat maps (2.28(ii)) but motivic cohomology
Hp,q(−) is functorial in all maps of schemes, so this functoriality transfers to CHd(−, n).

(ii) Since Hp,q(−) is represented by a motivic spectrum, we deduce that CHd(−, n) is A1-
invariant and satisfies Nisnevich descent.

(iii) By construction, CHd(X, n) = 0 for n < 0. Thus, Hp,q(X) ∼= CHq(X, 2q− p) = 0 for p > 2q.

This result also allows us to compute weight 0 and weight 1 motivic cohomology after further
higher Chow group computations [Bac21, Exercise 4.2, Theorem 4.14]. One obtains

H•,0(X) ∼= Zπ0X[0] and Hp,1(X) ∼=


Pic(X) p = 2,
OX(X)× p = 1,
0 else.

Conjecture 2.32 (Beilinson-Soulé Vanishing Conjecture). Is Hp,q(X) ∼= 0 for p < 0?

14
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2.4.3 Bloch-Kato Conjecture

Let ℓ be an integer invertible in k. The Kummer exact sequence yields a connecting homomor-
phism ∂ : k× → H1

ét(k, µℓ). Very briefly, via multiplicativity of étale cohomology, the definition
of Milnor K-theory (with Artin reciprocity) and ℓ-torsion of H•ét(k, µ⊗•ℓ ), this induces a map

k× ⊗ · · · ⊗ k× Hn
ét(k, µ⊗n

ℓ )

KM
n (k)

KM
n (k)/ℓ

∂n

∂n

∂n

the so-called Galois symbol or norm residue map.

Theorem 2.33 (Norm Residue Theorem/(Motivic) Bloch-Kato Conjecture). Let ℓ be an integer
invertible in k. The map ∂n : KM

n (k)/ℓ→ Hn
ét(k, µ⊗n

ℓ ) is an isomorphism.

For ℓ = 2 this was first conjectured by Milnor and as such is the Milnor conjecture. For n = 2 this
is the Merkurjev-Suslin theorem, as this case was first proven by them and the first major advance
in the resolution of this theorem. Voevodsky first proved the Milnor conjecture which earned
him a fields medal and he later went on to prove the entire theorem with ideas from Rost.

Theorem 2.34 (Beilinson-Lichtenbaum Conjecture, Rost-Voevodsky). Let X ∈ Smk and ℓ ∈ Z

be invertible in k. Then, Hp,q(X, Z/ℓ) ∼= Hp
ét(X, µ

⊗q
ℓ ) for p ≤ q.

This implies the norm residue theorem. Indeed, we first mention:

Theorem 2.35 (Nesterenko-Suslin ’90, Totaro ’92). We have CHd(k, n) ∼=
®

0 n < d,
KM

d (k) n = d.

So combining this result (2.35) with Levine’s comparison of Hp,q and CHd (see 2.30) we see that
the Milnor K-group term from the norm residue theorem (2.33) is identified with the motivic
cohomology term from the Beilinson-Lichtenbaum conjecture (2.34).

Combining the Bloch-Kato conjecture with the motivic Atiyah-Hirzebruch spectral sequence
also gave the resolution of the Quillen-Lichtenbaum conjecture which related étale cohomology
to algebraic K-theory.

The resolution of this conjecture was a huge leap in the development of motivic homotopy
theory. It required motivic versions of Spanier-Whitehead duality and the Steenrod algebra.
Especially the latter is a focus point of this seminar.

3 7 ≤ n Functors for SH (Lucas Piessevaux)

We will discuss a number of functors on SH. In fact, there are at least seven relevant ones: TALK 3
30.10.2025f#, f∗, f ∗, f!, f !,⊗, Map.

Recall from the previous two talks for a (qcqs) scheme S that Spc(S) = LmotPSh(SmS) and
SH(S) = Spc(S)∗[(P1)⊗−1]. This contains examples like KH and Z(n)mot which is mysterious
but in nice enough cases contains the examples Hi

ét(−; µ
⊗j
ℓ ) for i ≤ j and RΓZar(−, WrΩi

log).

Our goals today are:

• SH∗ : Schop → CAlg(PrL
st) with E = (lft),

15
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• motivic properties: A1-invariance, gluing, Thom twists.

In particular, this is not supposed to be an exercise in the theory of Heyer-Mann [HM24] but
rather we want to apply the formalism to prove motivic properties!

3.1 The Functors 1-4 and 7: (#, ∗,⊗)

We begin with the easier functors, namely the ∗’s, ⊗, Map and # which are functors 1-4 and
number 7.

3.1.1 Closed Monoidality and Push-Pull (∗,⊗)

• ⊗: Equipping Spc(S) with a cartesian symmetric monoidal structure, we obtain a sym-
metric monoidal structure on Spc(S)∗ given by the smash product. This gives rise to
SH(S) ∈ CAlg(PrL

st).12

• ∗: For f : T → S we get T ×S − : SmS → SmT which preserves A1
X → X and Nisnevich

squares. So it induces an adjunction

Spc(S) Spc(T)
f ∗

f∗

where f∗ is induced by restriction and f ∗ is obtained via left Kan extension (and localiza-
tion). On representables we obtain f ∗X+ ≃ (T×S X)+, whence f ∗ is symmetric monoidal
and f ∗P1

S ≃ P1
T.

Proposition 3.1. Given f : T → S there exists an adjunction

SH(S) SH(T)
f ∗

f∗

such that:

(i) f ∗Σ∞−n
P1 X+ ≃ Σ∞−n

P1 (T ×S X)+,

(ii) f ∗ is strong symmetric monoidal and strongly cocontinuous.13

Proof. The composite

Spc(S)∗ Spc(T)∗

SH(T)

sends P1
S 7→ Σ∞

P1P1
T, so the universal property of stabilization induces the adjunction. It

moreover gives rise to the formula in (i). For (ii) the strong symmetric monoidality is inherited
from the unstable setting and strong cocontinuity follows from Σ∞−n

P1 (T ×S X)+ ∈ SH(T)ω,
meaning that it sends a family of compact generators to compact objects.

Remark 3.2. Note that the formula 3.1(i) uniquely determines f ∗ since SH(S) is generated by
these Σ∞−n

P1 X+.
12In particular, Σ∞

+X⊗ Σ∞
+Y ≃ Σ∞

+(X×Y).
13I.e. preserves compact objects.
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3.1.2 Forgetful Functor #

Onto the 7th functor.

If f : T → S is a smooth map, then we have a functor

SmT → SmS, (X → T) 7→ (X → T → S).

By left Kan extension we obtain an adjunction

PSh(SmT) PSh(SmS).
f#

f ∗

Remark 3.3.

(i) One can check on representables that for smooth f , this f ∗ agrees with the f ∗ defined in
the push-pull section.

(ii) Given X ∈ SmT we have f#(X → T) = (X → T → S) ∈ PSh(SmS) on representables by
left Kan extension. In that regard, we are just forgetting.

Now, the smooth projection formula (SPF).

Proposition 3.4 (SPF). Given a smooth f : T → S there exists an adjunction

Spc(T)∗ Spc(S)∗
f#

f ∗

of Spc(S)∗-modules where we view Spc(T)∗ ∈ ModSpc(S)∗ via f ∗.

Proof. The Spc(S)∗-linearity is an equivalence f#(X⊗ f ∗Y) ≃ f#X⊗Y, i.e. the smooth projection
formula. Note that all functors involved commute with colimits and Σ−n, so we may check
the formula on representables. There, it’s asking for X×T (T ×S Y) ∼= X×S Y in SchS which is
pullback pasting.

Corollary 3.5. Given a smooth f : T → S there exists an adjunction

SH(T) SH(S)
f#

f ∗

with f#Σ∞−n
P1 X+ ≃ Σ∞−n

P1 X+.

Proof. Basechanging the Spc(S)∗-algebra SH(S) we obtain an SH(S)-linear adjunction

Spc(T)∗ ⊗Spc(S)∗ SH(S) SH(S)
f#

f ∗

but the left side is seen to be

Spc(T)∗ ⊗Spc(S)∗ Spc(S)∗[(P1
S)⊗−1] ≃ Spc(T)∗[( f ∗P1

S)⊗−1] ≃ SH(T).

The formula is as before.

Remark* 3.6. The equivalence f#Σ∞−n
P1 X+ ≃ Σ∞−n

P1 X+ uniquely determines f#.

The next result (smooth base change) involves Beck-Chevalley maps, one of which is a mate of
the other. To check that both are equivalences, it suffices to check that one of them is. This will
be true for many results in this talk and we will only write down one of the transformations
later.
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Proposition 3.7 (SBC). Given a pullback square

T′ S′

T S

g

⌟
q p

f

with smooth p, q the BC transformations

q#g∗ ⇒ f ∗p# and f ∗p∗ ⇒ q∗g∗

are equivalences.

Proof. It suffices to check q#g∗ ⇒ f ∗p#, then its mate automatically becomes an equivalence
by abstract nonsense. All functors here commute with colimits and desuspensions, so we are
going to evaluate on X+ with X ∈ SmS′ . We need to show T′ ×S′ X ≃ T ×S X as T-schemes.
This follows from the pasting of the pullback squares

T′ ×S′ X X

T′ S′

T S

⌟

⌟

so we are done.

Emma: This is just parametrized cocompleteness of presheaf topoi.

Corollary 3.8. Let j : U ↪→ X be an open immersion. Then,

U U

U X

⌟
j

j

is a pullback, so the smooth base change formula tells us id ≃ j∗ j# and j∗ j∗ ≃ id, so j# and j∗ are
fully faithful.

3.2 Motivic Properties

3.2.1 Homotopy Invariance

Warning 3.9. The assignment S 7→ SH(S) does not invert A1-equivalences. What does is the
functor

SmS → SH(S), ( f : X → S) 7→ Σ∞
P1 X+.

Sven remarks that this the classical analog is Sh(∗) ̸≃ Sh(R).

Lemma 3.10. Let p : E→ S be an affine bundle, then p∗ is fully faithful.

Proof. Since p is smooth, the adjunction p# ⊣ p∗ exists. Consider ε : p# p∗ ⇒ id. All functors
commute with colimits, so this is determined by the value on representables. Evaluate on
Σ∞

P1 X+ with X ∈ SmS. Then, we need to check Σ∞
P1(E×S X)+

≃−→ Σ∞
P1 X+ in SH(S). We may

first trivialize E and assume E = An
S by Nisnevich descent and then this is A1-invariance.
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3.2.2 Thom Twists

Recall that for a finite locally free sheaf E → S we take the cofiber sequence

(V(E) \ S)+ V(E)+ ThS(E)

as the defining sequence for ThS(E).

Lemma 3.11. This refines to an assignment

Vectcore
S Pic(SH(S))

K(S)

ThS(−)

where K(S) is Q-construction K-theory.

Proof. By Nisnevich separation (1.13) of SH we can always descend to the affine case S = Spec R,
so P ⊆ R⊕n. Consider the SES

0 E′ E E′′ 0

and write π : T → S as the moduli of splittings of this SES. This is an affine bundle because
locally its fibers are of the form homS(E′′, E′). So π∗ is fully faithful.

Definition 3.12. We write K(S)→ Pic(SH(S)) ≃ AutSH(S)(SH(S)), E 7→ ⟨E⟩.

Example 3.13. We have OP1 7→ [2](1) = Σ2,1.

3.2.3 Purity

This is the ur-theorem of SH and the reason Morel-Voevodsky setup SH the way they do. Their
insight is that their definition allows us to perform things like deformation to the normal cone.

Definition 3.14.

(i) A smooth closed pair (X, Z) is a closed immersion Z ↪→ X in SmS.

(ii) A map of smooth closed pairs (X′, Z′)→ (X, Z) is a map X′ → X that induces a pullback
square

Z′ Z

X′ X

⌟

on closed subschemes.

(iii) A map f : (X′, Z′)→ (X, Z) is weakly excisive if

Z′ X′ X′/(X′ \ Z′)

Z X X/(X \ Z)

is cocartesian in Spc(S).
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Example 3.15. Nisnevich squares and zero sections of affine bundles are examples.

The point is that there is a slightly larger class of squares than the Nisnevich squares which are
sent to cocartesian squares including things like blow-up squares.

Construction 3.16. Let (X, Z) be a smooth closed pair.

(i) The blowup

E = p−1(Z) BlZ(X)

Z X

⌟
p

i

is a map of smooth closed pairs.

(ii) Let DZX = BlZ×0(X ×A1) \ BlZ×0(X × 0) be the deformation to the normal cone. This
has a closed immersion Z×A1 ↪→ DZX which forms a smooth closed pair.

Blowups are universal smooth closed pairs such that the exceptional divisor is an effective
Cartier divisor.

Here is the idea: The scheme DZX is a family over A1 with generic fiber X and special fiber the
normal cone NZX of Z in X, as suggested by its nomenclature. Pictorially:

X DZX NZX

1 A1 0

This induces a cospan (X, Z)→ (DZX, Z×A1)← (NZX, Z).

Theorem 3.17. These maps are weakly excisive.

Proof Sketch. Assume (X, Z) = (V(E), Z). Then, (BlZ X, p−1(Z)) = (V(OPZ(E)(1)), PZ(E)). Then,

PZ(E) V(OPZ(E)(1)) V(OP(E)(1))/V(OP(E)(1)) \P(E)

Z V(E) V(E)/(V(E) \ Z)
⌜ ⌜

Now, use pasting. The right square is cocartesian in PSh(SmS) and the left square is cocartesian
in LA1 PSh(SmS).

The above is hard, so we are sketchy. Applying weak excisiveness, we have constructed a
zig-zag of equivalences giving rise to:

Corollary 3.18 (Purity). Let (X, Z) be a smooth closed pair. Then, there is an equivalence

X
X \ Z

≃ NZX
NZX \ Z

= ThZ(NZX)

in SH(S).
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3.2.4 Localization/Gluing

We want to study what happens in the setting

U X Z
open closed

which gives rise to a stable recollement

SH(U) SH(X) SH(Z).

Recall that the term K(Perf(X)Z) shows up when trying to compute the K-theory of open-
closed decompositions. On the other hand, KH ̸≃ K and in particular A1-invariance yields
KH(Perf(X)Z) ≃ KH(Perf(Z)).

Remark 3.19. The small étale site étS is a topological/nil invariant. Moreover, (SmNis
S , LA1) is

also topologically invariant.

Theorem 3.20. Given an open-closed decomposition U
j

↪−→ X
i←−↩ Z we get a stable recollement

SH(U) SH(X) SH(Z).
j#

i∗
j∗

i∗

Lemma 3.21. Let E ∈ Spc(S). Then, the square

j# j∗E E

U i∗i∗E
⌜

is cocartesian.

Construction 3.22. Given X ∈ SmS and t : Z → XZ. We set

ΦS(X, t) : Schop
S → Set, ΦS(X, t)(Y) =

{
HomS(Y, X)×HomS(YZ ,XZ) {YZ → Z t−→ XZ} YZ ̸= ∅,
∗ YZ = ∅

as the moduli space of maps into X that factor through Z on the special fiber.

Remark 3.23. There is an equivalence ΦS(X, t) ≃
(
X ⨿XU U

)
×i∗XZ S in PSh(SmS).

Lemma 3.24. Up to LNis the presheaf ΦS(X, t) is invariant under étale neighbourhoods of t(Z).

Proof. Consider

Z X′Z X′

Z XZ X

t′

p

t

with étale p, then ΦS(p) is a Nisnevich equivalence. These are presheaves of sets. Let’s show
that it’s an effective epimorphism. Let Y → X be a class in Γ(Y; ΦS(X, t)) and set

Y′ = X′ ×X Y

Y X′

q étale g

then
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q−1(YU) Y′

YU Y

⌟ q

is a Nisnevich square. Note that f |Y′ is lifted by g and that f |YU lifts trivially. Check the same
for the diagonal.

Lemma 3.25. Up to LA1 the presheaf ΦS(X, t) is invariant under affine bundles.

Proof. Given a vector bundle E → S consider t : S → V(E) and tZ. We’d like to show
ΦS(V(E), tZ) ≃ S. Consider

A1 ×ΦS(V(E), tZ)→ ΦS(V(E), tZ), (a, f ) 7→ a f .

This is a homotopy between id and

ΦS(V(E), tZ) S ΦS(V(E), tZ).t

Proof of 3.20. Everything commutes with colimits,14 so we can reduce to representables. The
claim is equivalent to X ⨿XU U → i∗XZ to be a motivic equivalence for all X ∈ SmS. By
universality of colimits this is equivalent to (X ⨿XU U)×i∗XZ S→ S is a motivic equivalence, i.e.
ΦS(X, t) ≃ S for every t.

• Use Nisnevich descent to reduce to S affine.

• Replace t(Z) by an étale neighbourhood Z ↪→ V ↪→ X such that p : V → S is étale at Z
with restriction tV : Z → VZ.

• Pick it small enough for it to admit h : V ↪→ V(E) such that h is étale at t(Z).

• Use A1-invariance.

Corollary 3.26. The functor i∗ : SH(Z)→ SH(X) is fully faithful.

Proof. We have i∗ j# ≃ 0 which can be checked on representables using that U and Z do not
intersect. So the same holds for their right adjoint j∗i∗ ≃ 0. Then, the gluing sequence (3.21) for
i∗E gives a cofiber sequence

0 i∗E i∗i∗i∗E,
ηi∗

so ηi∗ is an equivalence. By the triangle identities also i∗ε is an equivalence. Hence, we’re left to
show conservativity of i∗.

14We didn’t show this for i∗ but let’s blackbox this.

22



Qi Zhu Motivic Homotopy Theory

3.2.5 Proper Base Change

The idea is
PBC = CBC + SBC + ambidexterity.

Let p : X → Y which we factor as X
i

↪−→ P
q−→ Y where i is a closed immersion and q is smooth

and proper. We know base change (3.7) for q# and ambidexterity is a relation between q# and q∗.
So the strategy will be to discuss ambidexterity and closed base change.

Theorem 3.27 (Ambidexterity). Let f : X → Y be smooth and proper. Consider the diagram

X

X×Y X X

X Y

∆ f

π1

π2
⌟

f

f

then
Nm f : f# ≃ f#(π2)∗(∆ f )∗ ⇒ f∗(π1)#(∆ f )∗ ≃ f∗⟨Ω f ⟩

is an equivalence.

An equivariant analog is the Wirthmüller isomorphism or a sort of Atiyah duality.

Theorem 3.28 (CBC). Consider a pullback square

YZ Y

Z S

k

g
⌟

f

i

where i, k are closed immersions, then f ∗i∗
≃
=⇒ k∗g∗.

Proof. The functor i∗ is fully faithful (3.26), i∗ is epic, so we may precompose with i∗ and prove
this equivalence then. This part is some quick abstract nonsense.

Theorem 3.29 (CPF). Let i be a closed immersion, then i∗ is i∗-linear, i.e. i∗X⊗Y ≃−→ i∗(X⊗ i∗Y).

Proof. Let j denote the open complement. Then, i∗, j∗ are jointly conservative and we check the
abstrat nonsense there.

Theorem 3.30 (SCBC). Consider

Z′ X

Z X

k

g
⌟

f

i

with closed immersions i, k and smooth f , g, then f#k∗
≃
=⇒ i∗g#.

Proof. Use that k∗ is fully faithful (3.26).
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3.3 Assembling the Six Functors

What do we know? We have a geometric setup (Schqcqs, lft) with a suitable decomposition
I = (open immersions) and P = (proper maps) by Nagata compactification. The functor

SH∗ : Schop → CAlg(PrL)

is sheafy, so locally of finite type maps is enough Nisnevich locally.

• I: For j ∈ I we set j! = j# as left adjoint to j∗. Need BC = SBC and PF = SPF.

• P: For p ∈ P we set p∗ = p∗ as right adjoint to p∗. Need BC = CBC + (SBC + ambidexterity)
and PF = CPF + (SPF + ambidexterity).

• I ∩ P: Need BC = SPBC ⇐= SCBC + (SSBC + ambidexterity)

Corollary 3.31. The functor SH extends to a Nisnevich sheafy 6FF on (Schqcqs, lft).

4 Transfers, Motivic Cohomology & EM-Spectra (Thomas Blom)

Let R ∈ CRing. Consider TALK 4
13.11.2025

SmS Cor(S, R)

Spc(S) Spctr(S, R)

SH(S) SHtr(S, R)

ModHR

Γ

Σ∞

Rtr

Utr

Rtr

HR⊗−

Ω∞ Ω∞

Utr

Ψ

Φ

Today: Explain the entire part that is not the left column.

(1) Cor(S, R),

(2) Spctr(S, R),

(3) SHtr(S, R),

(4) HR

⟳

HA,

(5) Motivic cohomology.

4.1 Correspondences

Idea: Motivic cohomology admits more functoriality than just contravariant functoriality in
maps of schemes. This is encoded by Cor(S, R). There are also wrong-way maps like in classical
algebraic topology, called transfers.

The category Cor(S, R) has the same objects as SmS. Its morphisms are ’cycles’ in X×S Y over
X. One example is

A1 Spec(k[x, y]/(x2 − f (y)) A1.
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Maps are MapCor(S,R)(X, Y) = C0(X ×S Y/X) ⊗ R where roughly C0(X ×S Y/X) is the free
abelian group on all closed integral subschemes Z ↪→ X ×Y Y such that Z → X ×S Y → X is
finite and onto on an irreducible component.15

These can be composed using ’pullback/intersection’. Any f : X → Y in SmS admits a graph
Γ f . This defines a functor Γ : SmS → Cor(S, R).

Voevodsky defines mixed motives as certain presheaves on Cor(S, R).

4.2 Spaces with Transfers

The category Cor(S, R) is additive (with ⨿) and symmetric monoidal (with ×). Imposing
Nisnevich sheaves and A1-invariance gives

Spctr(S, R) ⊆ PShΣ(Cor(S, R))

where the right side is something like simplicial presheaves (and in Hoyois’ paper it actually is).
Here, the Nisnevich topology on SmS induces one on Cor(S, R).

This is modelled by ’A1-invariant non-negative chain complexes of Nisnevich sheaves’ with
transfers in ModR.16

Remark 4.1. Alternatively, the functor Γ : SmS → Cor(S, R) induces by Yoneda extension
a functor PSh(SmS) → PShΣ(Cor(S, R)) which is an algebra through Day convolution. Can
define Spctr(S, R) = PShΣ(Cor(S, R))⊗PSh(SmS) Spc∗(S).

4.3 Spectra with Transfers

Definition 4.2. Let SHtr(S, R) = Spctr(S, R)[(RtrP
1)−1] ≃ Spctr(S, R)⊗Spc∗(S) SH(S).

4.4 Eilenberg-MacLane Spectra

Definition 4.3. Let HR = Utr(1SHtr(S, R)).

By general module nonsense we get an adjunction

ModHR Mod1(SHtr(S, R)) = SHtr(S, R)
Ψ

Theorem 4.4 (Ostvaer–Röndigs). This restricts to an equivalence between the full subcategories
of cellular objects.

Observe:

D≥0(R) Spctr(S, R)

D(R) SHtr(S, R)

const

const

so for A ∈ D(R) we get that HA = Utr const(A) is canonically an HR-module.

Definition 4.5. We write K(A(q), p) = Utr(RtrSp,q ⊗R const A).
15This is slightly wrong, Z → X needs to dominate an irreducible component.
16This secretly uses hypercompleteness of ShNis(SmS).
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4.5 Motivic Cohomology

Theorem 4.6. Let A be an R-module and X ∈ SmS be essentially smooth over a field k.17 Then,

Hp,q(X, A) ∼= [Σ∞
+X, Σp,qHA].

Proof Idea. ’Essentially by definition’ one obtains Hp,q(X, A) ∼= [X+, K(A(q), p)] and deduce the
stable version from this. Hoyois uses the definition

Hp,q(X; Z) = Hp−q
Zar

Ä
X, Ztr(G

⊗q
m )[−q]

ä
or perhaps some slightly different indexing.

5 Motivic Steenrod Algebra (David Wiedemann)

Let k be a perfect field and ℓ ̸= char k with c = c(k) the characteristic exponent. TALK 5
20.11.2025

Let M•,• be the bi-graded algebra of stable motivic cohomology operations with Z/ℓ-coefficients.
These contain ’reduced power operations’ Pi ∈M2i(ℓ−1),i(ℓ−1) and Bockstein operation β ∈M1,0

as well as H•,•(k, Z/ℓ). Let A•,• ⊆M•,• be the algebra spanned by these.

Theorem 5.1. Let S/k be a Noetherian scheme of finite Krull dimension which is essentially
smooth over k.

(i) The map A•,• →M•,• is an isomorphism with explicit basis as an H•,•(S, Z/ℓ)-module
given by {βεr Pir · · · Pi1 βε0 : r ≥ 0, ij ≥ 0, ε j ∈ {0, 1}, ij+1 ≥ ℓij + ε j}.

(ii) The map (HZ/p)•,•(HZ/p)→M•,• is an isomorphism.

(iii) There is an equivalence of HZ/ℓ-modules HZ/ℓ⊗ HZ/ℓ ≃ ⊕
α Σpα,qα HZ/ℓ.

Definition 5.2. Let S be a scheme and SchS be the category of separated finite-type schemes.
We call a full subcategory C ⊆ SchS admissible if:

(i) S, A1
S ∈ C ,

(ii) If X ∈ C and U → X is a finite étale map, then U ∈ C ,

(iii) C is closed under finite (co-)products.

Examples are smooth schemes or normal schemes.

Theorem 5.3 (Fundamental square). Let R be a Z(l)-algebra and i : C → D is an inclusion
admissible subcategories with C ⊆ Smk. Then, the square

H∗Nis,A1(D) H∗Nis,A1(C )

Htr
Nis,A1(D , R) Htr

Nis,A1(C , R)

i∗

Rtr Rtr

i∗

commutes.

We will prove this later.

17This probably means that it’s a filtered colimit of smooth things.
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Theorem 5.4. Let S be essentially smooth over k and A be a finitely generated Z[1/c]-module
and F be a field of characteristic ̸= c. Let p ≥ 2 and q ≥ 0. Then, FtrK(A(q), p)SmS is a direct
sum of FtrSa,b with a ≥ 2b and b ≥ q. If L ∈ Htr

A1,Nis(SmS, F) is a direct sum of FtrSa,b for
a ≥ 2b, b ≥ dim S, it is called split proper Tate of weight ≥ dim S.

Proof Sketch. For admissible C let KC = K(A(q), p)C . If C is the subcategory of normal schemes
over S, then Voevodsky shows the result. Let i : SmS ↪→ C , then

i∗FtrKC ≃ Ftri∗KD ≃ FtrKSmS

using the fundamental square. But i! ⊣ i∗ and c! is fully faithful.

Fix H = HZ/ℓ and Kn = K(Z/ℓ(n), 2n).

Corollary 5.5. The map H•H →M•,• is an isomorphism.

Proof. There is a lim1-sequence

0 lim1
n
‹Hp−1+2n,q+n(Kn, Z/ℓ) Hp,qH limn ‹Hp+2n,q+n(Kn, Z/ℓ) 0

By the theorem above (Z/ℓ)trKn ≃ Σ2n,nHn for a split proper Tate Hn of weight ≥ 0. One
computes that ‹Hp−1+2n,q−1+n(Kn, Z/ℓ) ∼= [Σ∞Hn, Σp−1,q(Z/ℓ)tr1].

It is a general fact that ⊕
n Hn

⊕
n Hn colimn Hn

is split by Voevodsky. So the lim1-term vanishes.

Corollary 5.6. There is a splitting H ⊗ H ≃ ∧
α Σpα,qα H as H-modules.

Proof. The object colimn Hn is split proper Tate by work of Voevodsky of weight ≥ 0 and
colimn Hn ≃

⊕
α(Z/ℓ)trSpα,qα . Thus,

(Z/ℓ)tr(H) ≃ Σ∞ colim
n

Hn ≃ (Z/ℓ)tr
⊕

α

Σ∞Spα,qα .

So (Z/ℓ)tr(H) is cellular which is Φ(H ⊗ H) for Φ : ModH → SHtr(C , Z/ℓ). Therefore, we get
H ⊗ H ≃ H ⊗⊕

α Σ∞Spα,qα .

5.1 Comparison with Étale Steenrod Algebra

Let k be algebraically closed. Let aét : H∗(Schk) → H∗ét(Schk) and uét : D(Smk) → D(Smk).
There is an isomorphism

Z(1)[1] ≃よGm ∈ DNis(Smk).

By Kummer, if m ∈ k×, there is an isomorphism aétZ/m(1) ≃ µm which implies

aét(Z/m(q)[p]) ≃ µ
⊗q
m [p].

So ‹Hp,q(X, Z/m) ∼= ‹Hp
Nis(X, Z/m(q))→ ‹Hp

ét(X, µ
⊗q
m ) for all pointed presheaves.

Theorem 5.7. This is an isomorphism for p ≤ q.

Corollary 5.8. Let X ∈ H∗(Smk). Étale sheafification induces an isomorphism‹H•,•(X, Z/ℓ)[τ−1] ∼= H•ét(X, µ⊗•ℓ )

where τ ∈ µℓ(k) is a primitive root of unity with τ ∈ H0,1(Spec k, Z/ℓ).
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Let H•,•ét = limn H•+2n(Két
n , µ⊗•+n

ℓ ) with connecting maps coming from P1 ⊗ Két
n → Két

n+1. Since
k is algebraically closed, µℓ is constant, so Két

n is constant. Since Spec k has no non-trivial covers,
RΓ : Hét(Smk) → S is given by evaluation at Spec k. Thus, id → RΓ ◦ c is an isomorphism.
Thus, ‹H•(Két

n , A) ∼= H•ét

Ä
K(µℓ(k)⊗2n, n), A

ä ∼= ‹H•Top

Ä
K(µℓ(k)⊗2n, n), A

ä
.

Take A = Z/ℓ. This gives an isomorphism of algebras χ : A• → M•,0
ét where A• is the

topological Steenrod algebra.

This allows us to define Pi
ét = τi(ℓ−1)χ(Pi). Note that H•,•ét is generated by Pi

ét, βi
ét and τ±1. Use

that τ : M•,n
ét → H•,n+1

ét . This defines a map ψ : A•,• → H•,•ét .

Lemma 5.9. The diagram

A•,• H•,•

H•,•ét

ψ

commutes.

Proof of 5.1.

(i) The theorem holds over any perfect field by Voevodsky, but we deal with algebraically
closed k. It suffices to prove:

(a) The map A•,•/τ → H•,•/τ is injective.

(b) The map A•,•[τ−1]→ H•,•[τ−1] is surjective.

We omit how to see that this is sufficient.

(a) This was shown by Voevodsky. For every P = ∑I aI PI a space X and w ∈ H•,•(X, Z/ℓ)
such that P(w) ̸= 0. The example X = (Bµℓ)N for N ≫ 0 works.

(b) Consider the commutative diagram

A•,•[τ−1] H•,•[τ−1] ‹H•+2n,•+n(Kn, Z/ℓ)[τ−1]

H•,•ét
‹H•+2n

ét (Két
n , Z/ℓ)

φ

It suffices to see that φ is injective. Let x = (x0, x1, · · · ) ∈ H•,•[τ−1] and supp φ(x) = 0.
Thus, xn 7→ 0 in ‹H•+2n,n(Kn, Z/ℓ)[τ−1]. But (Z/ℓ)trKn is split proper Tate, so there is
no τ-torsion, whence xn = 0.

(iii) We compute
H•,• ∼= [H, Σ•,•H] ∼= [H ⊗ H, Σ•,•H]H ∼= ∏

α

H•−pα,•,qα .

Omit the result for general base schemes.

28



Qi Zhu Motivic Homotopy Theory

5.2 Back to Fundamental Square

Definition 5.10.

(i) An fpsl cover is a faithfully flat cover f : U → X such that f∗OU is free of rank prime to ℓ.

(ii) An ldh-cover is a cover which cdh-locally is fpsl.

Theorem 5.11. Let X ∈ Schk. There exists an ldh-cover by smooth & quasi-projective schemes.

Proposition 5.12. The map i∗ : Htr(Schk, R) → Htr(Smk, R) preserves RtrWldh-local equiva-
lences.

Finally, the hard part of the theorem:

Corollary 5.13. Let R be a Z(ℓ)-algebra. Then,

Htr(Smk, R) Htr
Nis,A1(Smk, R)

Htr
ldh(Smk, R)

∃

Proof of 5.3. By Voevodsky we can assume that C = Smk and D = Schk. It suffices to show that
Rtri∗F → i∗RtrF is an isomorphism for F ∈ H∗Nis(C ). Consider

Rtri∗i!i∗ Rtri∗

i
′∗Rtri!i∗ i∗Rtr

The top and left maps are equivalences. It’s left to show that the bottom map is an equivalence.
When restricted to F ∈ Smk the map i!i∗F → F is an equivalence. So i!i∗F → F is a ldh-
local equivalence. So i∗Rtri!i∗F → i∗RtrF is an RtrWldh-local equivalence, but these become
equivalences in Htr

Nis,A1(D , R).
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