Six Functor Formalisms
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Abstract

These are my (live) TeX'd notes for the six functor formalisms seminar in Bonn, WiSe
2025/26. There is a more thorough abstract in the seminar program but it’s pretty long, so
summarized we are going to cover the following:

We start by setting up six functor formalisms following Heyer-Mann [HM?24]. Then, we
discuss an example on locally compact Hausdorff spaces via Verdier duality following Volpe
[VoI21]. We end with an example from the theory of p-adic Lie groups resulting in the
linearization hypothesis after Clausen [Cla25].

My notation and language is not always consistent with the speakers’ choices. I also
occassionally added some parts which were not included in the actual talks; such parts will
always be indicated by a star like Lemma*.

Feel free to send me feedback. :-)
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Qi Zhu Six Functor Formalisms

1 Spans and Six-Functor Formalisms (Thomas Blom)

Thomas changed the title of the talk and uses span instead of correspondence which has long had Tark 1
a meaning in category theory, namely a functor to [1]. 16.10.2025

Kaif: Also, span is another word that starts with Sp.

1.1 What is a six functor formalism, morally?

Let ¢ be a ’category of geometric objects’, e.g. 4 = LCH. A six functor formalism on € consists
of:

¢ an ‘co-category of sheaves D(X)" for every X € €,
* D(X) is closed symmetric monoidal, so there is ®, Map(—, —), 1,

e any f : Y — X induces a "pullback” functor f* : D(X) — D(Y) which has a right adjoint
f+, the pushforward,

e for’any’ f : Y — X there is an exceptional pushforward f, : D(Y) — D(X) which has a right
adjoint f*, called exceptional pullback.

These satisfy:
¢ functoriality,
¢ pullback is strong symmetric monoidal, in particular f*(M ® N) ~ f*M ® f*N,

¢ proper base change: For a pullback square

in ¢ there is an equivalence ¢'f. ~ f1(¢')' or equivalently f*¢ ~ g/(f’)* after passing to
adjoints,

¢ projection formula: M ® fiN =~ fi(f*M ® N).

Example 1.1. Let ¥ = LCH. Consider D(X) = Sh(X,DZ). Amap f : Y — X then gives
o (fLPU) = F(fHU)),
* (f*F)U) = Lsn (colimy>f(ur) open F(V)),'

* (AiF)U) = colim gc 1y fib(F(FHU)) — F(F U\ K))?,
K—U proper

* f'is kind of mysterious.

Suppose now for simplicity that ¢ has a terminal object *. For X € € we will almost always
write p: X — *.

LYou want to evaluate on f(U) but it’s not open, so we approximate it by opens. Then, it need not be a sheaf, so
we sheafify.
2If f is an open embedding, then this is extension by 0.
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Definition 1.2. Let D be a six functor formalism on . For X € ¥ and A € D(X) we define
I'X,A)=p:A and T.(X, A)=pA.
Usually, A = p*1 = 1.
Example 1.3. We have
H*(X,Z)=p«p*Z and H:(X,Z)= pip*Z.
You can also do homology and get
Ho(X,Z) = pp'Z and HY(X,Z) = pp'Z.
Example 1.4 (Kiinneth). Consider the pullback square

XXYLY

N
fx p JPY
\L \‘
X — %
px

then

IFe(XxY)=pl
=~ (py)i(fa)fxl
~ (py)ipy(px)l
=~ (py)(py(px) 1@ 1)

~ (px) A ® (py)d
~ Te(X) @T(Y)

Example 1.5 (Poincaré duality). Let wx = p'l. Then, ['(X, wx) =~ Map(['.(X), 1).
Proof. We perform a Yoneda argument, so

Map(M, T(X, wx)) =~ Map(M, p.p'1)
~ Map(pip*M, 1)
~ Map(M ® p1,1)
~ Map(M, Map(I'.(X), 1)).

O]

If X is orientable, then one can check wx ~ 1[n], so this suggests Poincaré duality (but certainly
this is not yet a proof of the Poincaré duality at this point because you need to prove this
equivalence and show the existence of the 6FF and so on).

1.2 What is a six functor formalism, really?

The above “definition” should hurt from the viewpoint of a homotopy theorist. Let’s do it more
coherently. Here is a "pre-definition’.

Definition 1.6. Let ¢ be an co-category with finite limits. Then, a 3FF is a lax symmetric
monoidal functor D : (Span(%), ®) — (Catw, X).

We take the cartesian monoidal structure on € but this does not induce the cartesian monoidal
structure on Span(%).
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Notation 1.7. We write
e F=DXLY=Y):DX) = DY),

e Ai=D(Y =YL X): D(Y) = D(X),
e There is a symmetric monoidal structure (®, 1) on D(X).?
Definition 1.8. A 6FF is a 3FF such that f*, fi admit right adjoints and & is closed.

At this point all exceptional pushforwards exist. The categorical fix is to simply mark those
edges for which it should exist.

Definition 1.9. A geometric setup is a pair (¢, &) where
(i) & C ¢ is a wide subcategory,
(ii) pullbacks of maps in & along any map exist in ¢ and they lie in & again,
(iii) & has pullbacks and & — ¢ preserves these.*
(iii’) Equivalently: If f, fog € &, theng € &.

Definition 1.10. The category Span(%, &) is the full subcategory of Span(%’) on those spans

oéogosuchthatgeéa.

Remark 1.11. If we only start with a geometric setup, then we really assume only the existence
of pullbacks along maps in & to be available in ¢, so it need not have all pullbacks. In that
sense, Span(%) is ill-defined but this is not so bad, we can freely add in limits — e.g. we can
define Span(%, &) as a full subcategory of Span(PSh(%)).

Now, we can redefine 3FF to:

Definition 1.12. Let ¢ be an co-category with finite limits with a geometric setup (¢, &). Then,
a 3FF is a lax symmetric monoidal functor D : (Span(%, &), ®) — (Cat, X).

Proposition 1.13. If ¢ has finite products, then x defines a symmetric monoidal structure on
Span(¥, &).

If ¢ does not have finite products, then one obtains an co-operad Span(%, &'). Heyer-Mann
spend a lot of effort on this [HM24, Proposition 2.3.3] but according to Thomas one could also
just enlarge Span(%’, &) to a category with finite products and then take the suitable suboperad.

1.3 Sanity Check

Let’s unpack our abstract definition and recover all those desired properties of 6FFs.

(i) The composite

(#°P)1 —— Span(¥, &) —— Catl

3In ¢ * every objects admits a preferred cocommutative coalgebra structure via the diagonal and by the backwards
functoriality via (—)* it becomes a commutative algebra in Span(%). So the lax symmetric monoidality of D sends
this to a commutative algebra in Cat.

4In part (ii) the pullback need not be a pullback in & because the unique maps coming from the universal property
are in ¢ and need not be in &



Qi Zhu Six Functor Formalisms

is lax symmetric monoidal.” By [Lur17, Theorem 2.4.3.18] this is equivalent to a functor
¢°P — CMon(Cats). This gives ® and strong symmetric monoidality on f*.

(ii) There is an equivalence

DXLY=Y)oDZ E X=X ~DZ & Y=Y
which gives functoriality on f*. Similarly f;.

(iii) There is an equivalence

DXLY 3B 2y oDy=Y% 2)0DXLY=Y)~af"

Yﬂ/X&W
SN A

we obtain g{(f')* =~ f*g, i.e. proper base change.

(iv) The projection formula is a bit trickier.

(fidy) \

X \

X><Y

Thus,
Ao (id X f)r =~ fi(f,id)" =~ fio A} o (f x id)".
Using symmetric monoidality of pullbacks we deduce (=) ® fi(—) =~ fi(f*(—=) ® (—)).

1.4 Constructing a 6FF

Often, one can construct some pullback/pushforwards, etc. by hand - see e.g. our example for
LCH - and so it is desirable that one could glue these together into a 6FF.

Definition 1.14. Let (¢, &) be a geometric setup. A suitable decomposition of & is a pair
I, P C & of wide subcategories such that:

(i) Pol =&,
(ii) (¢, 1),(¢,P) are geometric setups,
(iii) Any f € I N P is n-truncated for some n > —2.

Condition (iii) is rather technical but at least in the example LCH is not relevant since this is an
honest (1, 1)-category.

5The first functor is strong symmetric monoidal.
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Example 1.15. Let ¥ = LCH. Any f : X — Y is a composite

X ‘13X iy

of an open embedding and a proper map. Indeed, take X as the closure of I'(f) C X x Y.

Theorem 1.16. Let (¥, &) be a geometric setup admitting finite products and I, P C & be a
suitable decomposition. Let D : ¥°P — CMon(Cat,,) be a functor. Suppose:

(i) For j : U — X in I the functor j* admits a left adjoint j; such that the following are
satisfied:

(a) Base change: Given a pullback

ul i X/
S
u — X
the Beck-Chevalley map ijg* = f*ji is an equivalence.’
(b) Projection: The preferred map ji(j*(—) ® (—)) = (—) ® ji(—) is an equivalence.

(ii) For p : Y — X in P the functor p* admits a right adjoint p. such that the following are
satisfied:

(a) Base change: Given a pullback

Y 1 x!
b
Y — X

the Beck-Chevalley map f*p. = g.g" is an equivalence.

(b) Projection: The preferred map (—) ® p«(—) = p«(p*(—) ® (-)) is an equivalence.

(iii) For a pullback square

vV i,y
[ |
UFX

the Beck-Chevalley map jig. = p.ii is an equivalence.
Then, D extends to a 3-functor formalism D : Span(%, &) — Catw.

One observation is that for this to have any chance to be true, we will have j* ~ j'.

There are some extended ways to look at this for which we also obtain uniqueness then
[CLL25, DK25]. These solve some really fundamental problems because Liu-Zheng'’s work is
really hard to understand, as the combinatorics going on in their papers is too involved.

Example 1.17. We get a 3FF on LCH given by X — Sh(X, DZ).

You can still get a 6FF which can be done using Verdier duality. Thomas is not aware of a
different way than this to obtain the 6FF on LCH.

®Note that this is a property!
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1.5 Extending 6FF
This is the last part that we forced Thomas to speak about.

Definition 1.18. Let D be a 3FF on (¢, &) and ¢ be a site. Then, D is sheafy if D* : ¥°P — Cats
is a sheaf.

Proposition 1.19. Let D be a sheafy 3FF on (¢, &) and ¢ be subcanonical. Let &’ C Sh(%) be
those maps f : T — R such that for all X € ¢ and all maps X — Rthemap T xg X — X liesin
&. Then,

(i) (¢,&) — (Sh(¥),&’) is a map of geometric setups,
(ii) D extends to a sheafy 3-functor formalism D’ on (Sh(%), &”),”
(iii) if D is a presentable 6FF, then so is D’.

Remark 1.20. The condition on &” is essentially that it consists of those maps which locally
lie in &. That’s one of the main points for the above results. These decompositions into open
immersions and proper maps may not be possible but only possible locally.

In practice, &” is often chosen much larger and indeed, there are ways of enlargening &’ which
often is quite specific to the 3FF we consider.

Remark* 1.21. There is another extension result allowing ’stacky’ maps [HM?24, Theorem 3.4.11] which
was not mentioned in this talk. It might feature in future talks.

2 Kernel Categories 1 (Jonah Epstein)

TALK 2
2.1 Recollection on Enriched and (oo, 2)-Categories 23.10.2025

There are several ways to set this up; we follow Gepner-Haugseng [GH15].

Recall that a colored operad /multicategory .# consists of objects and for Xy,--- ,X,,Y € .# a
set of multimorphisms .#(Xy, - - - , X;;; Y) together with identity, composition and associativity
assumptions.

Example 2.1. Let S be a set. Then, there is a multicategory ¢’s defined as follows:
(i) Objects: S x S,
(i) Maps: We have

* Y. =X; foralli
ﬁs ((XOI Yl)l (Xll YZ)/ ttty (anlf Yﬂ)l (XO/ Yn)) = l l
%) else.

This multicategory is supposed to encode composition.

Definition 2.2. An enriched category with objects S over a monoidal category 7 is an Os-
algebra in 7.

So this is a map s — 7 and the intuition is that on objects we have (X, Y) — Hom” (X,Y) and
on multimorphisms

(X, Y),(Y, Z)) = (X, Z)) = (Hom” (X, Y) ® Hom” (Y, Z) — Hom” (X, Z)) .

This now generalizes to the co-world. If we only want a set of objects, then we can take Os
and directly use the co-version of the above definition [GH15, Definition 2.2.17]. For spaces,

Gepner-Haugseng define a generalized co-operad A¢® [GH15, after Remark 2.4.4].

"Recall that a contravariant functor starting from an co-topos is a sheaf if it is limit-preserving.
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Definition* 2.3. Let S € §. Consider AP — S, [n] — S*". It can be checked to satisfy the Rezk-Segal
conditions [GH15, after Remark 2.4.4], so it unstraightens to a double co-category® Agp — AP,

So we want to consider the following definition:

Definition 2.4. Let S € § and 7" be a monoidal co-category. A 7/ -enriched co-category with
space of objects S is an A’ -algebra in 7.

To define the co-category of enriched co-categories, we want one for all possible S € S.
There exists a cartesian fibration Alg(¥) — Ope8" whose fiber over & is Alg (7).
Definition 2.5.

(i) The pullback

Alg (V) —— Alg(?)
Lo

ns,gen
S T Op &

[e0]

is the co-category of categorical algebras in 7.

(ii) We let Enry C Alg_,.(7) be the reflective subcategory where fully faithful and essentially
surjective functors are inverted. This is the co-category of 7 -co-categories.

For (ii) we really want to impose some condition forcing S ~ ¢“°* for a #-enriched category %
That’s why we don’t take Alg_..(?') but rather Enry .

We can transfer enrichments.
Construction 2.6. Let o : ¥ — # be lax monoidal. Then, there is a functor
Ty : Enry — Enry, X — X, MapV(X, Y)— a (Map"’/(X, Y)) .

Remark* 2.7. If 7 is a presentably monoidal co-category, then Map., (14, —) : ¥ — S is lax monoidal
[GH15, Example 4.3.20], so we can transfer enrichments to obtain the underlying co-category in this case.
Does some variant work if ¥ is not presentable?

Remark 2.8. If 7 is closed monoidal, then, ¥ is enriched over itself with mapping objects
Map” (X, Y) = Map. S(XY).

Comment®. It seems like Gepner-Haugseng need to pass to a different model to show this [GH15,
Corollary 7.4.10]. In Lurie’s model of enriched co-categories this is also discussed in [HM24, Example
C.1.12]. O

Example 2.9.

(i) Cat is self-enriched.
(ii) Span(%) is self-enriched with Map Span ((g)(X, Y)=XxY.
Definition 2.10. We write Cat(, ) = Enrca, as the co-category of (oo, 2)-categories.

Definition 2.11. Amap f : Y — X is an (o, 2)-category ¢ is left adjoint if there exists a map
g X — Y and 2-morphisms 77 : idy = gr and € : fg = idx called (co-)unit such that the
diagrams

f= f&f § = 8f8
\ ﬁlgf \ Qge

commute.

81.e. a generalized non-symmetric co-operad A(s)p — A°P which is a coCartesian fibration.
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2.2 Category of Kernels
Throughout the entire talk, assume that (¢, &) is a geometric setup with finite products.
Definition 2.12. Let D : Span(%¢, &) — Cato be a 3FF.

(i) If & = all, let #p = tp(Span(¥’)) € Cat(.p) be the (oo, 2)-category of kernels.

(ii) Let S € ¢ and put 65 C € be the subcategory spanned by E. Then, (445, E) is a

geometric setup and there is a map of geometric setups (¢ s, all) — (¢, &) which thus
induces a 3FF

Ds : Span ((ﬁg/s) — Span(¢, &) — Catw
which hence allows us to define
JD,s = Tps (Span(%”g/s)) € Cat(w2),
the (oo, 2)-category of kernels.
Concretely, #p s is the following (co, 2)-category:
* Objects: Maps X — Sin &,
* Maps: Funs(Y, X) = D(X XsY),

¢ Composition: Let N € D(X x5Y),M € D(Y x5 Z). Consider X x5 Y Xg Z along with all
the possible projections. Then, M o N = (7113)/(71;, M ® 1153N) € D(X x5 Z).

Note the self-symmetry. It suggests the following.
Remark 2.13 ([HM24, Proposition 4.1.4]). There is an equivalence l/g, P~ DS

Proposition 2.14 ([HHM24, Proposition 4.1.5]). The functor Dg from 2.12 splits as
Pp,s ¥p,s
Span(%g/s) — Ji/D,S — Cat(wlz)

where the functors are given as follows:

¢ The functor ®p is id on objects and on morphisms we start with f = [Y < Z — X]
which induces amap f': Z — X x5 Y and we put ®p s(f) = f{/(1) € D(X x5 Y).

* Put ¥p s(X) = D(X) on objects and on maps let M € Fung(Y, X) = D(X XsY), then we
put
¥p,s(M) = (m1)y (M ® 715(—)) : DY) = D(X).

This M is often called kernel of the Fourier-Mukai transform (711);(M ® 715(—)).

Remark* 2.15. Kevin Lin’s answer in https://mathoverflow.net/questions/9834 is a great way to
motivate this terminology. Recall that a classical Fourier transform is a function g(y) = [ f(x)e*™ dx.
Here, M resembles f(x) and e2*¥ resembles 775(—). Integration along the fiber comes from the pushfor-
ward. The term f(x) is typically called integral kernel and kernel here does not have the meaning from
algebra but rather stands for the central object in this integration — in German Kern (der Sache). See
https://mathoverflow.net/questions/24098.

Remark 2.16 ([HM24, Section 4.2]). This construction is functorial in D and S.


https://mathoverflow.net/questions/9834
https://mathoverflow.net/questions/24098
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2.3 Descent
Recall that for a sieve ZZ C ¢y a functor F : €°P — 9 satisfies descent if F(U) = limyegor F(V).

Definition 2.17. A functor F : €°P — & satisfies universal descent along % if it has descent
along all pullbacks

frU —— w
Lo
Cuw — Cu
on.
If D : Span(%, &) — Cat is a 3FF, then we write D* : ¥°P — Span(%, &) — Catc.
Proposition 2.18 ([HHM?24, Proposition 4.3.1, 4.3.3]).

(i) Let D be a 3FF and % be a sieve for X € €. Suppose that D* satisfies universal descent
along % . Then,
T lim 77
DX — i Abu

is fully faithful.

(ii) Let % be a sieve on X € ¢ and suppose & = all. Suppose that D* satisfies universal
descent along 7% . Then,

colimU —s X
Uew

in p.

2.4 Suave/Prim Objects and Morphisms
We obtain interesting interactions between * and !.
Definition 2.19. Let D bea 3FF on (¢, &). Fixamap f : X — Sin & and P € D(X).

(i) We say that P is f-suave if it is a left adjoint morphism in J#p 5. We write SD¢(P) € D(X)
for the right adjoint, called f-suave dual of P.

(ii) We say that P is f-prim if it is a right adjoint morphism in #p 5. We write PD¢(P) € D(X)
for the left adjoint, called f-prim dual of P.

Remark 2.20. Letidx : X — X. Then, P € D(X) is (idx -)suave if and only if it is prim if and
only if it is dualizable.

Proof*. Each of those three conditions corresponds to the existence of Q € Funx(X, X) ~ D(X) with
commuting diagrams

P=—=P®QQ®P Q== Q®P®Q
RN

SO we win. O

Lemma 2.21 ([HHM24, Lemma 4.4.5]). Let D be a 6FF. Let (f : X — S) € & and P € D(X). Then,
P is f-suave if and only if the natural map

ni‘MapD(X)(P, f1)y® P — MapD(XXSX)(nTP, 5 P)

becomes an equivalence after applying Map, (1, A'(—)). Then, SD f(P) ~Map | (X)(P, ).

10
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Here, Map is one of the six functors. There is a similar criterion for primness [HM24, Lemma
4.4.6]. In practice it’s often not so hard that these two objects are equivalent but rather that it
comes from this natural map.

Heyer-Mann [HHM?24, Section 4.4] show a bunch of additional stuff about these such as locality
on source and target. These are maybe meant to be introduced when we really need to apply
them.

Lemma 2.22 ([HM?24, Lemma 4.4.18]).
(i) Suppose that (Af)l € D(X x5 X) is compact, then f-suave objects in D(X) are compact.
(ii) Suppose that1 € D(S) is compact, then f-prim objects in D(X) are compact.

Remark* 2.23. You can also deduce some general duality-type statement and relation between suave
and prim duals [HM24, Lemma 4.4.17, 4.4.19]. We see a special case of it in 2.26.

2.5 Suave & Prim Maps
We have just discussed suave and prim objects. Now we discuss suave and prim maps.
Definition 2.24. Let D bea 3FF. Let f : Y — X be amap in &.

(i) Then, f is D-suave if 1 € D(Y) is f-suave. We call wy = SD¢(1) € D(Y) the dualizing
complex.

(ii) Then f is D-prim if 1 € D(Y) is f-prim. We call 6; = PDf(1) € D(Y) the codualizing
complex.

(iii) A D-suave map f is D-smooth if wy is invertible.

The dualizing complex is relatively common in geometry but as of now this is not really the
case for the codualizing complex.

Lemma 2.25 ([HM?24, Lemma 4.5.4, 4.5.5]). Let Dbea 6FFand let 711, 715 : Y Xxx Y — Y.

(i) Then, f : Y — X is D-suave if and only if 7} f'1p(x) — 751p(y) is an equivalence. In this
case, wy =~ flpx).

(i) Then, f : Y — X is D-prim if and only if fi(712)+Aillpy) — fillp(y) is an equivalence. In
this case, ¢ ~ (72)+Alp(y)-

Now, finally the interaction of * and !; they are related by a twist given suaveness/primness
conditions.

Proposition 2.26 ([HHM24, Corollary 4.5.11]). Let D be a 6FF.
: : * ~u f! * AU !
(i) If f is D-suave, then wy ® f* >~ f" and f* ~ MapD(Y)(wf,f )-
(ii) If f is D-prim, then f(6; ® —) =~ f. and f, ~ f*MapD(Y)(éf, —-).
Theorem 2.27 (General base change, [[{M24, Lemma 4.5.13]). Let

/

y £

A
X’ — X

be a pullback diagram in .

11
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(i) If g is D-suave, then the natural maps
§fe=flg" . fls' =ff's=8f.8f=f%
are equivalences.

(ii) If gis D-prim, then the natural maps

f'ge = 8L 8 S Faugfl = 81 figh = ¢S
are equivalences.
Proposition 2.28 ([HHM24, Corollary 4.5.18]). Let (f : X — S) € &.
(i) If f is D-suave, then every dualizable object P € D(X) is f-suave and SD¢(P) =~ PV ® ws.

(ii) If As is D-suave, then every f-suave object P € D(X) is dualizable and in this case,
SD¢(P) ~ PV & w;fl.

There are some more results in [HM24, Section 4.5] and it’s best to have them introduced when
we actually need them. All results of this talk are essentially proved by pure abstract nonsense.

3 Category of Kernels 2 (Maria Stroe)

. TALK 3
3.1 Etale & Proper Maps 06.11.2025

Recall (2.26): Let D be a 6FF on (¢, &) with (f : Y — X) € &.
(i) If f is D-suave, then wy ® f* = SD#(1) ® f* ~ ' D(X) = D(Y).
(ii) If f is D-prim, then f(6; ® —) =~ f. : D(Y) — D(X).

We wish to discuss notions that trivialize these twists (3.3) — that’s the point of étale and proper
maps.

Definition 3.1. Let D be a 3FF on (¢, &) and let (f : Y — X) € & be a truncated map.
(i) We say that f is D-étale if it is D-suave and Ay is D-étale or an equivalence.
(ii) We say that f is D-proper if it is D-prim and Ay is D-proper or an equivalence.

We can make this inductive definition by the inductive nature of truncatedness: f is n-truncated
if Ay is (n — 1)-truncated and (—2)-truncated if it is an equivalence.

Remark* 3.2. Suppose that f is n-truncated. Then, f is D-étale if f, A s Ap o0 are all D-suave (eventu-
ally, we get an equivalence).

The next result shows that twists are trivialized in the étale/proper setting.

Proposition 3.3. Let D be a 6FF on (¢, &) and (f : Y — X) € & such that Af is D-étale. Then,

there exists a preferred natural transformation f' = f* of functors D(X) — D(Y) such that
TFAE:

(i) fis D-étale.
(ii) f'lx — f*1x is an equivalence in D(Y).

(iii) f' = f*isan equivalence of functors D(X) — D(Y)

12
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*

Proof. Induction on truncatedness 7 of f. By induction hypothesis suppose that A' F = A

Let’s discuss the base step, so say that g : X — Y is an equivalence. By base change on

g

X —Y
"
X=X

we get ¢' ~ ¢*.
Then, we construct
fre Mg f e NG = N f e fF

A/
YxXY Ly
IR

Y — X

f

Here, we use functoriality and an explicit natural transformation 775 ' = 7t} f* which we now
construct. For this, we use the two ingredients:

with

e Base change: 75 = f*f,

o fif,mHml.
So we can write
wf = mmf S mf S L g
Now let’s start the proof.
(i) = (i): We want to show that f is D-suave. Consider the map
T flx — i fflx ~ mily.
By (ii) it is an equivalence after applying A}, so we are done by [HM24, Lemma 4.5.4].

(i) = (iii): From suave base change (2.27) we get that 7t} f' = 7t} f* is an equivalence by suave base
change and applying A} to this implies f° = f*.

O]

There is a similar result for properness by replacing (=)', (=)* by (=), (=)« [HM24, Lemma
4.6.4(ii)].

Lemma 3.4. Let D be a 3FF on (%, &).

(i) Then, D-étale maps are stable under base change and composition, and if f,¢ € & and
p & p 8
f8, Ay are D-étale, then g is D-étale.

(ii) The D-étaleness of a truncated map is D*-local on the target. If D is compatible with small
colimits, then we can check D-étaleness of f on a universal D*-cover of D-étale maps in
% of the source.

13
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(ii") An f € & is D-proper if it is so on a universal D-proper D*-cover on the source such that
fi commutes with % °P-indexed limits.

Proof.

(i) Let’s only do base change. Suppose that f : Y — X is D-étale and that f' : Y/ — X'isa
base change of f. Induction on #. Since f is n-truncated, also f’ is n-truncated.

e f'is D-suave: D-suaveness is preserved under base change.
* A is D-étale: Note that A is (n — 1)-truncated and a pullback of Ay, so by induction
hypothesis Ay is D-étale.

(ii) Assume that f is n-truncated and locally D-étale on some universal D*-cover % of the
target. Then, f is D-suave since D-suaveness is stable under base change. We’re left to
show that A¢ is D-étale. Consider the diagram

Ay
V — VxyV —Uu

[
Y — Y xxY — X
Ay T

where 7t = f o711 = f o 7. By assumption, Ay, is D-étale, so Ay is locally D-étale on the
universal D*-cover m*% .

O]

3.2 Descendability and Exceptional Descent

Goal: Suave and prim maps are good sources of *-covers and !-covers. To begin, let’s recall
some descent statements.

Definition 3.5 (Descent data). Let ¢, 7 € Cat, and % C Cf/u be a sieve and F : ¥°P — V.
Then, we write

Desc(%,F) = Vligp F(V).
e 0]

We say that 7 descends along 7% if F(U) = Desc(%, F).
Definition 3.6. Let D be a 6FF on (%, &).

(i) We say that Z C (%), isa D'-cover if it is generated by a small family {U; — U}; and
D' descends along % .

(ii) We say that % is a universal D'-cover if for every V — U in € the family {U; xy; V — V}
generates a D'-cover.

(iii) Amap f : Y — X is a (universal) D'-cover if the sieve generated by f is a (universal)
D'-cover.

Lemma 3.7. Let D be a 6FF on (¢, &) and (f : Y — X) € & be such that D(X) has all countable
limits and colimits. If f is D-suave and f* : D(X) — D(Y) is conservative, then f is a universal
I-cover and x-cover.’

9We need limits for ! and colimits for .

14
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Proof. One can view D'-descent as
D'(X) = lim D'(Y;)
[n]eA

with Y, = Y*x"+1)_ We use Lurie’s Beck-Chevalley condition [Lur17, Corollary 4.7.5.3]:

(1) The oo-category D(X) admits geometric realizations of f'-split simplicial objects and these
geometric realizations are preserved by f'.

(2) Letwa : [m] — [n], then

0!

d
D'(Yy) —= D'(Yyp1)

AL

D'(Yy) —5— D'(Yus1)
(n)

is left adjointable where d° : Y, 11 =~ Y Xx Y — Yy x x X.
Here is why:

(1) By assumption, D(X) has all countable colimits. By D-suaveness, f'(—) ~ w F® f*(—)and
f* is a left adjoint, so it preserves colimits. Thus, f' preserves colimits.

!

(2) By suave base change d?n)!(x/ = oc!d?m)! (see 2.27).

By (1) & (2) we get that D'(X) — lim,ca D'(Y;) has a fully faithful left adjoint. Moreover,
[~ MapD(Y)(wf, f'), so f' (see 2.26) is also conservative. O

There is a similar criterion for prim maps but it is slightly more involved. To discuss this, we
will take a detour first.

3.3 Mathew’s Notion of Descent

Let us take a quick detour to Mathew’s descendability notion [Mat16].

Definition 3.8. Let (¢, ®, 1) be a symmetric monoidal stable co-category and A € CAlg(%). We
write (A) C € for the thick ®-ideal generated by A.

(i) We say that A is descendable if 1, € (A).

(ii) Suppose furthermore that ¢’ is presentable and that ® commutes with all colimits in both
variables. Then, ¢ is called a stable homotopy theory.

(iii) Let ¢ be a stable homotopy theory. Then, A — B admits descent if B is descendable in
CAlg(Mod4(%)).

In particular, A being descendable means that 1 — A admits descent.
Example 3.9.
(i) Let R € CRing, then D(R) is a stable homotopy theory.
(ii) Let X be a scheme or a prestack. Then, QCohy is a stable homotopy theory.

Definition 3.10. Let 4" be an co-category with finite colimits.

15
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(i) Afiltered diagram F : I — ¢ is ind-constant if it lies in the essential image of ¢ — Ind(%).

(i) A simplicial object Mo : AP — € is ind-constant if Z>g — €, n > limyea., My is
ind-constant.

There is a dual notion for pro-constant cofiltered diagrams and pro-constant cosimplicial objects.
Definition 3.11. Let A € CAlg(%¢). We write

CB*(A)=(A=3A--)
for the cobar resolution.

Proposition 3.12 ([Mat16, Proposition 3.20]). An object A € CAlg(%¥) is descendable if and
only if CB*(A) defines a constant pro-object on {Tot, CB*(A)}, which converges to 1 and
(14), — {Tot, CB*(A)}, is a pro-isomorphism.

Proposition 3.13 ([Mat16, Proposition 3.22]). Let € be a stable homotopy theory and A be
descendable. Then, the adjunction
A®—
¢ —— Modx(%)
u
is comonadic. In particular,

% = Tot(ModA(€¢) = Mod x4 (€)---).

3.4 Back to Six Functor Formalisms

One can state Mathew’s notions slightly more generally, namely in a stable monoidal co-category
¢ instead of in CAlg(%).

Lemma 3.14 ([HM?24, Lemma 4.7.4]). Let D be a stable 6FF and (f : Y — X) € & such that
D(X) has all countable colimits and limits. Suppose that f is D-prim and that f.1 € D(X) is
descendable.

. . . !
(i) Then, f is a universal D*-cover and D’-cover.

(ii) Every f'-split simplicial object in D(X) is ind-constant and every f*-split cosimplicial
object in D(X) is pro-constant.

Proof Idea. We want to show that fi f ' € Fun(D(X), D(X)) is descendable (but not in the algebra
category). This can be reduced into descendability of f,1. O

4 Six-Functor Formalism on Condensed Anima (Gabriel Ong)

We will work light today, i.e. set x = R;. Some set-theoretic technicalities go away then.

4.1 Condensed Math
We want topological algebra to behave better categorically.
Example 4.1. The category TopAb is not an abelian category, but Cond(Ab) is.

We try to rebuild ordinary algebra in condensed land. Instead of sets, abelian groups, rings,
... consider condensed sets, condensed abelian groups, condensed rings and so on. But really
you should look at analytic rings. These date back to old ideas like Johnstone’s observation that
CHaus — Set is monadic.

16
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Definition 4.2.

(i) Let ProFin be the full subcategory of the 1-category of topological spaces spanned by
sequential limits of finite sets.'"

(ii) It becomes a site with covers the finitely jointly surjective families.

Definition 4.3. A condensed anima X is a hypersheaf of anima on ProFin. This gives rise to an
co-category Cond(An).

Definition 4.4.
(i) A surjection of condensed anima is an effective epimorphism.
(ii) A quasicompact condensed anima is an object if all covers'! admits a finite subcover.
(iii) A condensed anima X is quasiseparated if for Y,Z — X withY,Z qcalso Y xx Z is qc.
For X € Top consider Homryp(—, X) : ProFin°? — Set. This is a condensed set.
Proposition 4.5.

(i) This construction gives a fully faithful embedding

(metrizable compactly generated spaces) — Cond(An).

(ii) This restricts to an equivalence

(metrizable compact Hausdorff spaces) ~ Cond(Set)1“®.
We shall briefly remark that metrizable spaces are already compactly generated.

4.2 Six Functor Formalism for A-Sheaves

Recall that singular cohomology H'(X; Z) can be written as sheaf cohomology H'(X; Z) for nice
enough spaces.

Definition 4.6. Let S be a finite set and A be a ring. We denote by A(S) = [],cs A the set of
A-valued continuous functions.

Proposition 4.7 ([HM?24, Construction 3.5.16, Lemma 3.5.12]).

(i) The functor Fin® — CAlg(Prk), S — Mod A(s) extends to a 6FF on ProFin given by
limi Si — colimi MOdA(S,»)-

(ii) This 6FF satisfies hyperdescent.
Proof.

(i) Use monadicity and construction from suitable decompositions with E = P = (all) and
I = (equiv).

(if) We do this for static A. More generally, run Lurie’s faithfully flat descent [Lur18, Appendix
D]. It’s enough to show that for every surjection S’ — S between profinite sets that
A(S) — A(S') is faithfully flat. Pass to presentations and check this termwise.

10These are light profinite sets!
HThese are defined by surjections from (i).
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There are two ways to extend to stacks.

(i) New !-able maps to those locally !-able in the site.

(ii) More generally, take E’ to be bigger than this locally !-able class.
Here is an example from scheme theory.

Example 4.8. Let ¥ = AffSch. Then, P} is a stack but pullback over Speck — Spec Z gives IP;
but P} — Speck is not an affine map.

This suggests that (i) is often not so useful.'?

Theorem 4.9 ([HM24, Theorem 3.4.11]). Let Dy : Span(¥¢,&) — Prt be a 6FF with (hy-
per)descent for (hyper)subcanonical €. Then, there exists some (minimal choice of) &’ which
is

¢ x-local on the target,

¢ [-Jocal on the source or target,

* tame, i.e. everymap f : Y — X in & with X € ¢ is !-locally on the source in &.
such that Dy extends uniquely to D : Span(2’, &’) — Cat(,.
Applied to D(—, A) : Span(ProFin) — Cat., we deduce:

Theorem 4.10. There is a collection of maps &’ in Cond(An) uniquely extending the 6FF on
ProFin to D : Span(Cond(An), &’) — Cat}, where:

(i) *local: An f : X — Y lies in &” if and only if for every representable S there exists S — Y
we have X xy S — Sisin &".

(i) !-local: Membership in &” can be checked on after composition or pullback with a universal
I-cover.

(iii) Tame: Maps f : X — S are in &’ if and only if there exists a !-cover of X and the
composition of f with any map in the cover is in &.

Definition 4.11. The 6FF for A-sheaves on Cond(An) is the one from the theorem (4.10). The
maps in &’ are called A-fine.

Definition 4.12. Let Abearingand f : X — * for X € Cond(An).
(i) The A-valued cohomology is I'(X, A) = f,1x € Mod,.

(ii) The compactly supported A-valued cohomology is I'.(X, A) = fillx € Mod, for A-fine
f.

Similarly, cohomology of sheaves.

12However, one could first try to enlarge % and then apply (i).
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4.3 Poincaré Duality

As usual in the stacky world, an open/closed immersion of condensed anima is a map which
after pulling back along a representable is an open/closed subset.

Lemma 4.13. Let A € CRing.
(i) Every open immersion of condensed anima is étale.

(ii) Every map from a profinite set to a qs condensed set is proper. In particular, every closed
immersion of condensed anima is proper.

Proof.

(i) By locality reduce to profinite sets f : X — Y. Reduce further to f being an inclusion of
clopens. Any open is a finite disjoint union of clopens in the light setting. The functors
have an explicit description here, f, is the restriction, check explicitly with unit and counit.

(ii) Check after pulling back to a profinite set. Consider f : S =+ X and T — X. Show that
S xx T — T is proper. Consider the subset S xx T C X x T. The source and target are
profinite and by conditions from last time we can deduce that this is proper.

O

Proposition 4.14. Let X be a metrizable compact Hausdorff space and

j open

U X i closed 7

with X = U U Z in Set. Then,

jgﬂu Ix iylly
is a fiber sequence in D(X, A).

Proof. Base change shows j*i,1z ~ 0. So j* fib(lx — i,1z) ~ j*1x ~ 1. Adjunction gives a
map
j;]lu — ﬁb(]lX — i*]lz).

Since this was a disjoint decomposition, (j*,i*) is a conservative family of functors [FHM?24,
Lemma 4.8.5]. So we are done. O

Lemma 4.15. Let f : [0,1] — * be the projection.
(i) Then, f is proper.

(ii) Let X be a metrizable locally compact Hausdorff space and let P : X x [0,1] — X. Then,
P* is fully faithful.
Proof.
(i) Consider g : {0,1}N — [0,1]. Then, g is proper and f o g : {0,1}N — x is proper. By
cancellation we need to show that g.1 11~ is descendable.

For n > 0 let C, be the disjoint union of 2" closed intervals, e.g. C; = [0,1/2]11[1/2,1],
with {0,1}N & lim, C,. Write &, : C, — [0,1]. Then, g+lyo1yn = colimy hyillc,, so it's
enough to show that /,,,1c, is descendable. The pushforward of 1 on this closed cover is
descendable in this setting.

d
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Theorem 4.16. Let f : X — * be the projection from a manifold X. Then, wx is locally equivalent
to A[—n] where 7 is the local dimension.

Proof. By locality, it’s enough to consider X = R". Can further reduce to X = IR. Consider
j: R = (0,1) = [0,1]. We have f.jilg =~ T(R, A) is the fiber of I'([0,1], A) — T'(9[0,1], A)
which is A[—1]. Thus, wx >~ A[—n] by locality. O

Corollary 4.17. Let X be a manifold and A € CRing. Then, I'(X, wx) ~ I'«(X, A)".
Proof. We have I'(X, wx) ~ f*flll ~ f*MapX(llX,f!Il*) ~ Map, (filx, 1) ~ T(X,A)". O

5 Applications to (Smooth) Representation Theory (Qi Zhu)

Surely, you know representation theory. Now, you just have to be smooth about it! TALK 5
20.11.2025

5.1 Smooth Representation Theory through Condensed Anima
5.1.1 Condensed Anima & Classifying Stacks

Recall from last talk that Cond(An) = Sh"™P(ProFin) and the six functor formalism of con-
densed anima.

Recollection 5.1. Let A € CAlg, then the universal property of Ind yields a diagram

« — D CAlg

T
(1) P

FP ’
j - (Siieolim; TTyes, A

ProFin®P

and postcomposing with Mod,_ gives D(—, A) : ProFin°® — Cat. This can be extended to
Cond(An)°P and then to a six functor formalism D(—, A) : Span(Cond(An), A-fine) — Cats
[HM24, Construction 3.5.16].

The co-topos Cond(An) contains Top but also a homotopical direction — in particular, it allows
us to form classifying stacks of topological groups. We will use this observation to study smooth
representation theory of locally profinite groups.

Definition 5.2. A locally profinite group is a Hausdorff, locally compact, totally disconnected
topological group.

So compact locally profinite groups are precisely the profinite groups.

Example 5.3. This includes profinite groups like Galois groups of (infinite) field extensions
Gal(L/K) or the Morava stabilizer group G, but also discrete groups, Q, and p-adic Lie groups
such as GL,(Qy).

Let G be a locally profinite group, then it is in particular a group object in Cond(An). If it acts
on some X € Cond(An), then we can form the stacky quotient

X /G = colim G*" x X € Cond(An).

[n]eAoP

We will in particular care about the classifying stacks * / G. Indeed, it gives information about
representation theory as follows!

20



Qi Zhu Six Functor Formalisms

5.1.2 Representation Theory
Let’s define smooth representation theory!

Definition 5.4. Let G be a locally profinite group, A € CRing and V be a continuous G-
representation. It is smooth if Stabg(v) C G is open for every v € V. We write Rep A(G)@ for
the 1-category of smooth G-representations and

Rep,(G) = D (Rep,(G)¥) and Rep,(G) = Rep,(G)
for its unbounded derived category and the left t-completion thereof.

Theorem 5.5 ([HM24, Proposition 5.1.12]). Let A € CRing and G be a locally profinite group.
There, there is a natural t-exact equivalence D(x / G, A) ~ Rep,(G).

Proof Idea. The proof strategy is by derived descent from abelian descent.

1. One first develops some general abstract nonsense to discuss the question for which
X € Cond(An) the co-category D(X, A) is the (left t-completion'® of the) derived category
of its heart. This turns out to be true for * / G, so D(x // G, A) ~ D (D(x | G, A)Y) [HM24,
Example 5.1.2, Proposition 5.1.8].

Thus, it suffices to prove D(x // G, A)Y ~ D(x /G, A)Y. In other words, it suffices to study
the relevant abelian descent data to obtain derived descent.

2. To perform abelian descent one notices D(G", A) ~ D (MOdX(GH)) where we denote
by A(G") € A (G") locally constant functions G" — A with compact support [[HM?24,
Lemma 5.1.9].1* Writing out the descent diagram for * / G and noting that we are working
in 1-categories, we obtain that D(x / G, A)? is the limit of

&
0 0 : 0
Mod{ ——= Mod, ) —m % Mody .
™

i.e. abelian descent.

At this point, writing out an equivalence Rep A(G)@ — D>+ J/ G,A) isa 1-categorical
problem which can be handled by hand [HM24, Proposition 5.1.12].

O]

Remark 5.6 ([FHHM24, Corollary 5.1.14, Remark 5.1.15]). Let ¢ : H — G be a map of locally
profinite groups. This induces an adjunction

£
D(x )) G, A) f<:> D(x ) H,\)

*

which can be described in terms of smooth representations.

(i) The pullback f* is the derived functor of taking a G-representation to its underlying
H-representation. It is called restriction/inflation depending on whether f is injective or
surjective.

13This part is automatic [HM24, Lemma 3.5.14].
14This result is stated for disjoint unions of profinite sets. To apply it to the locally profinite G we note that by
van Dantzig’s theorem there exists a compact open subgroup K < G, so we obtain a disjoint union decomposition

G = Ugglec/k 8K-
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(ii) If ¢ is the inclusion of a closed subgroup, then f, is the right derived functor of smooth
induction RIndY,. It ¢ is a topological quotient map with kernel U, then f, is the right
derived functor of taking U-fixed points R(—)Y, also denoted (—)Y.

(iii) The symmetric monoidal structure corresponds to the underlying tensor product of

A-modules with diagonal G-action.

5.2 Six Functors in Representation Theory

We have already described some of the six operations. Now, we shall also describe the !-functor
and discuss some of the six functor formulaic features.

5.21 !

Let A € CRing and G be a locally profinite group, then natural maps such as * / G — * need
not be A-fine, but we want shriekability to study six functor phenomena like being suave/prim.
We fix this by posing mild conditions.

Definition 5.7. Let A € CRing.

(i) Let G be a profinite group. We call
cdp G = sup {n: H"(G, V) # 0 for some V € Rep,(G)"'} € N U {co}
the A-cohomological dimension of G.

(ii) We say that a locally profinite group G has locally finite A-cohomological dimension if
there exists an open profinite subgroup K < G such that cds K < co.

Many p-adic Lie groups satisfy this condition [HM24, Example 5.2.2].
Lemma 5.8. Let A € CRing.

(i) Let G be a locally profinite group and H < K < G be compact subgroups with open K
and (closed) H. The map * / K — * // G is A-étale and * / H — * // K is A-proper.

(ii) Let G be a profinite group with cdp G < oo. Then, * J G — * is A-proper.

(iii) Let H — G be a map of locally profinite groups with locally finite A-cohomological
dimension. Then, * / H — * J/ G is A-fine.

Proof.

(i) First note that * — % // G is a *-cover since x — * // G is an effective epimorphism'> and D
is sheafy. Thus, we need to check that the pullback'® G/K — x is A-étale [HM24, Lemma
4.6.3(ii)]."” This can be checked on open covers [HM?24, Corollary 4.8.4(i)] but G/K is
discrete, so it reduces to * — * being A-étale.

Similarly, for A-properness, we need to check that K/H — * is A-proper. This is true
because K/H is a profinite set [HM24, Lemma 4.8.2(ii)].

(ii) We apply backwards 2-out-of-3 [HM24, Corollary 4.7.5] on

15This means that it is equivalent to its Cech nerve, which can be checked by hand.

16To compute the pullback we use the delooping Q(x / G) =~ G, some pullback pastings and the LES associated to
fiber sequences [NSS15, Definition 2.26].

7This pullback is truncated, so in particular, the map * / K — * / G is truncated.
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*L*//GL*

so we need to show that g is A-prim, fg = id,, that f is truncated, A-proper and that
g+l € D(x J/ G, A) is descendable. The first part follows from (i), the second part is clear.
Truncatedness follows from QOB >~ id [Lur09, Lemma 7.2.2.1]. and that g.1 is descendable
requires the finite cohomological dimension [FHM?24, Proposition 5.2.5].

(iii) Since the shriekable maps are right cancellative (by definition of geometric setups), it
suffices to check that * / G — % (and * / H — %) is A-fine. This can be checked after
restriction to * // K for some compact open subgroup K < G with cdy K < co.

Indeed, such K < G exists by locally finite A-cohomological dimension and (i) shows that
x [/ K= % /| G is A-suave. It is furthermore *-conservative since this is just the restriction
of a representation. Thus, the map is a universal !-cover and A-fine maps can be tested
I-locally on the source. This then follows from (ii).

O
In particular, those maps * / H — * // G are shriekable, so we should describe the shrieks.

Construction 5.9. Let A € CRing and let H < G be a closed subgroup of a locally profinite
group.

(i) For V € Rep A(H)O we set C-Indg(V) as the set of elements f : G — V such that

(a) f islocally constant,
(b) f(hg) =hf(g)forallh € H,g € G,
(c) the image of supp f in H \ G is compact.

It becomes a smooth G-representation via the right translation action on the domain.

(ii) The functor c-Indg is exact, so we denote its derived functor by
-Ind% : Rep ,(H) — Rep ,(G).

This is the compact induction functor.

Proposition 5.10 ([HHM24, Lemma 5.4.2, Proposition 5.4.4]). Let A € CRingand H < Gbea
closed subgroup in a locally profinite group with locally finite A-cohomological dimension.

(i) Then, fi : D(x J/ H,A) = D(* J/ G, A) is t-exact.

(ii) The diagram

— cInd§  ——
Rep,(H) ——— Rep,(G)

% P

D(x J H,A) T D(x J G,A)

commutes.

Remark 5.11. In fact, I@ o~ Rep in this setting [HM?24, Proposition 5.3.10].
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5.2.2 Suave & Prim in Representation Theory
Let us describe suave and prim objects and hence recover notions of duality.
Definition 5.12. Let A € CRing and let G be a locally profinite group with f : x / G — *.
(i) Let V € D(x J G, A). We write V¢ = T(x J/ G, V) = f.V for the derived invariants of V.

(ii) Suppose that G has locally finite A-cohomological dimension. An object V € D(x / G, A)
is called admissible if VX € Mod, is dualizable for all compact open K < G with
cdp K < oo.

(iii) Suppose that G is a profinite group with d = cdy G < co. We say that it is A-Poincaré (of
dimension d) if f. : D(x J G, A) = Mod, preserves dualizable objects.

(iv) A locally profinite group is locally A-Poincaré (of dimension d) if it admits an open
yPp group y p
profinite subgroup which is A-Poincaré (of dimension 4).

Lemma 5.13 ([HM24, Lemma 5.3.11]). Let A € CRing and G be a locally profinite group with
ig : K — G a compact open subgroup with cdy K < . Let V € D(x J/ G, A). The following are
equivalent:

(i) V is dualizable,
(ii) i¢V is dualizable in D(x J K, A),
(iii) the underlying A-module of V is dualizable.
Proof.
(i) = (iii): The implication (i) = (iii) is because D(* J/ G, A) — Mod, is symmetric monoidal.

(i) = (i): Let VV = Map /G A)(V, 1). It suffices to check that V @ VV — Map V. V)isa G-

equivariant equivalence. To do so, consider the following commutative diagram:

VeV ixMap_(V, V)

% |=

iV @if(VY) — ixV @ (ixV)Y — Map (i;V,ixV)

The left map is an equivalence since iy is symmetric monoidal. The lower right map
is an equivalence by assumption (ii). For the remaining equivalences, we consider the
projection formula

ixo((xV® —)= V®in(-)
whose two-fold right adjoints form an equivalence
ixMap (V, -) = Map  (ixV, ik —)-

This explains the bottom left and the right equivalence. In particular, the top arrow must
be an equivalence. We conclude with conservativity of i}.!

180n models, we are just forgetting an action but the map being an equivalence can be tested underlying.
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(iii) = (ii): Since fx : * J K — * is A-proper (5.8(ii)) we conclude that the fx-prim and dualizable
objects in D(x J/ K, A) agree [HM?24, Lemma 4.6.3(iii)]. So (iii) means that g*V is prim
where g : * — * // K and we need to show that V' is fx-prim. But g is A-prim (5.8(i)) and
q.1 is descendable [HM?24, Proposition 5.2.5]." So V is prim [HM24, Corollary 4.7.5].

g

In special settings there are more checkable conditions for admissibility [HM24, Remark 5.3.13].
Another finiteness condition is compactness which will thus naturally show up in our arguments
below. Let us briefly state it here.

Lemma 5.14 ([HM24, Corollary 5.3.4]). Consider A € CRing and a profinite group G with
cdp G < co. Then, 1 € D(x / G, A) is compact.

Proof. By 5.8(ii) the map f : * / G — * is A-proper, so we can compute
RHomp, jG,a)(1, —) =~ f-Map (1, =) =~ f. =~ fi

which commutes with colimits as a left adjoint. Here, the first equivalence follows by passing to
left adjoints. Now we can pass to the underlying spectrum and then apply (2 to obtain the
underlying space and both of these passages commute with filtered colimits. ]

Proposition 5.15 ([HHM24, Proposition 5.3.14, 5.3.19]). Let A € CRing and G be a profinite
group with locally finite A-cohomological dimension. Let V € D(x / G,A)and f : * / G — *.

(i) The object V is f-prim if and only if it is compact.
(@) In this case, PD¢(V) ~ MapG(V, A(G)).

(b) If K < G is a compact open subgroup with cdy K < oo and V € D(x J/ K, A) is
dualizable, then PD f(c—Indlcg V) ~ c-Ind§ VV.

(ii) The object V is f-suave if and only if it is admissible. In this case, SD¢(V) ~ MapG(V, ).
(iii) The map * / G — * is A-suave if and only if G is locally A-Poincaré.

Proof. Let’s start by recalling a classical result from smooth representation theory that we will
use.

Lemma [HM?24, Lemma 5.3.7]. For V € D(x / G, A) we have colimk<g open VK~ V.

CdA K<eoo

The fun thing is that you can also recover this result via a 6FF argument [HM?24, Lemma 5.3.7].

(i) Note that A € Mod, is compact. This implies that every f-prim object is compact in
D(x J G, A) [HM24, Lemma 4.4.18(ii)]. So onto the converse.

Claim. Let
G ={ixl:ig:* ) K— %/ G, K< G compact open with cdp K < co}.

Then, G consists of compact and f-prim objects and generates D(x / G, A).

19This uses cdp K < 0.
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(ii)

(iii)

Proof. We have seen that fx : * J/ K — * is A-prim (5.8(ii)), i.e. 1 € D(x J/ K, A)
is fx-prim. Moreover, ik is A-suave (5.8(i)), so ixi1 is f-prim [HM24, Lemma
4.4.9(ii)].

Furthermore, 1 is compact by 5.14. Since ig; i!K ~ ix ik, by A-étaleness of ix
(see 5.8(i)), it admits a right adjoint who commutes with (filtered) colimits and
hence preserves compact objects. So ikl is compact.

To see that G is generating we observe
PX = fy.ixP ~ f+ix:Map (1,igP) ~ f.Map (ix/1, P) ~ RHomp /G a)(ix:1, P)

where the third equality is general 6FF nonsense [HM24, Proposition 3.2.2]. By
the result discussed in the beginning of the proof, we conclude. O

Denote by (G) C D(x / G, A) the full subcategory generated by G under (co-)fibers and
retracts. Since primness is closed under these operations [[HM?24, Corollary 4.4.13] we
get (G) C Prim(x / G). On the other hand, Ind((G)) ~ D(x / G, A) since G consists
of compact generators [Lur09, Proposition 5.3.5.11]. Passing to compact objects yields

(G) ~ D(x | G, A)“.

(a) This follows from the general prim dual formula [HM?24, Lemma 4.4.6] while using
the c-Ind to understand A, from that formula.

(b) The map fx : * J/ K — * is A-proper (5.8(ii)). So, the dualizables agree with the
fx-prims in D(x / K, A) [HM24, Lemma 4.6.3(iii)] which in particular means that
fx-prim duality is the usual duality. Moreover, #; = c-Ind{ commutes with prim
duality [HM?24, Lemma 4.4.9]. So

PD¢(c-Indf V) =~ c-Indg (PDf, (V) ~ c-Indf V"
as desired.

We use

Lemma [HHM?24, Corollary 4.4.15]. Let D be a 6FF on some geometric setup
(¢,8)and f : X — Sbeamap in &. Let (Q;)ics be a family of objects in D(X).
Assume that the Q; are f-prim and D(X xs X) is generated by 717 Q; ® 715 Q).
Then, P € D(X) is f-suave if and only if f,Map(Q;, P) is dualizable for all Q;.

We take the family (Q;)ic; = G from (i). We have seen there that its consists of A-prim
objects and moreover,
ﬂikiK!]l &® 7T>2kZ.K/!ﬂ ~ i(KXK/)!]l

generates D(x // (G x G), A) by the same argument as in (i). We have also seen in the
proof of (i) that f.Map(ix:1, V) ~ VK, so the only if part of the statement translates to
admissibility. The suave dual formula is an instance of the general formula [HM?24,
Lemma 4.4.5].

Suppose first that G is locally A-Poincaré. Let H < G be a compact open A-Poincaré
subgroup. As in the proof of 5.8(iii) we see that * / H — * // G is a universal !-cover, so
it suffices to show that « / H — x is A-suave [HM?24, Lemma 4.5.8(i)]. So WLOG G is

A-Poincaré.

We need to show that 1 € D(x / G, A) is A-suave, i.e. admissible by (ii). In other words,
we need that VK = fi,1 is dualizable for every compact open K < G with cdp K < oo.
For this, we note fx.1 ~ f.ik.]l and f. preserves dualizables because G is A-Poincaré. On
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the other hand, ix is A-proper (5.8(i)), so ix«1 ~ ix/l. Now 1 is compact by 5.14 and ix:
preserves compacts as demonstrated in the proof of (i). On the other hand, compacts and
dualizables agree (5.16).

Conversely, suppose that * / G — *is A-suave. Since G has locally finite A-cohomological
dimension, it has a compact open subgroup K with cdy K < co. Moreover, being A-suave
is the same as admissibility by (ii), so * / K — * is still A-suave. So WLOG G is profinite
withcdp G < 0. Since 1 € D(x J/ G, A)is f-suave, i.e. admissible, the object f.ig.1 >~ fx,1
is dualizable in Mod, for every compact open K < G. On the other hand, ix,1 ~ ix/1
generate the dualizables in D(* / G, A) under (co-)fibers and retractions as demonstrated
in (i). So f. preserves dualizables.

O]

This prim duality is also called Bernstein—Zelevinsky duality and it is an example of a statement
that is really terrible to prove by writing down formulas but follows formally from six functor
nonsense! Just from the formulas, it’s not clear that this formula for the prim duality is
interesting and it’s hard to get this explicit prim duality formula on compact inductions by only
playing around with the formulas. With 6FF nonsense it’s not that bad!

Corollary 5.16. Let A € CRing and G be a profinite group with cdy G < co.
(i) Then, D(x J/ G, A) is compactly generated.
(ii) An object is compact if and only if it is dualizable.
Proof.
(i) We have seen this in the proof of 5.15(i), it is compactly generated by what we called G.

(ii) By 5.15(i) the compact objects agree with the f-prim objects where f : * / G — *. So we
need to show that f-primality agrees with dualizability. But * / G — * is A-proper (5.8(ii))
and in this setting we are done [HM?24, Lemma 4.6.3(iii)].

Ul
Example 5.17 ([HM?24, Example 5.3.21, 5.3.22]). Let p be a prime.
(i) Let A be a Z[1/p]-algebra and G be locally pro-p. Then, G is locally A-Poincaré.
(ii) Let A be aZ/p"-algebra and G be a p-adic Lie group. Then, G is locally A-Poincaré.

In each case one can give explicit descriptions of the dualizing complex and so suave duality
(5.15(iii)) recovers Poincaré duality in these settings. This is not really a new proof of Poincaré
duality because it relies on results from classical representation theory which are close to
Poincaré duality.

5.3 What the Hecke?
What the heck is a Hecke algebra?

They show up in various areas of mathematics. Frankly, I know neither of the motivations but
https://www.math.columbia.edu/ " martinez/Notes/introtohecke.pdf seems useful.

Definition 5.18. Let A be a field with char A = p > 0 and K < G be a compact open subgroup
of a locally profinite group with V€ Rep A(K)@. Then, H(G,K,V) = EndG(c-Ind% V) is the
associated Hecke algebra.
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Fact 5.19 ([HM24, Remark 5.5.1]).

(i) There is an isomorphism

H(G,K, V) = {f : G — Enda(V) : f is K-K-linear, supp f compact}.

(ii) Under this identification there is an involutive anti-isomorphism of algebras

L1 H(G,K, V) == H(G, K, V), «T)(g) = (T(g~')".
There are more refined derived versions of this construction by taking derived endomorphisms

instead of the underived version [HM?24, Remark 5.5.1].

Definition 5.20. Let A € CRing and G be a locally profinite group with a compact open
subgroup K < G with cdy K < oo.

(i) We denote by Hg the Mod -enriched co-category whose objects are the dualizable objects
in Rep , (K) and whose mapping objects are

Hi(V, W) = RHomg(c-Indg v, C-Ind% W) € Modj,.

(if) We denote by Hy = Hk(L, 1) € Algg (Mod,) and derived Hecke algebra of weight 1.

Theorem 5.21 ([[HHM24, Proposition 5.5.4, 5.5.6]). Let A € CRing and G be a locally profinite
group with a compact open subgroup K < G with cds K < co.

(i) Prim duality PD on Prim(x / G) induces an involutive equivalence
HE = Hy, V= VY = RHomp(V, A)
of Mod-enriched co-categories.

(ii) Let A be a field with char A = p > 0 and G be a p-adic Lie group with a p-torsionfree

compact open subgroup I < G. Then, (i) induces an anti-involution Inv : (}$)°P = H?
which coincides with Schneider—-Sorensen’s anti-involution Invsg [HM?24, Remark 5.5.1].

It seems like previously this was only defined for fields of positive characteristic A and you
need to work a little to write down these maps. Prim duality immediately yields a map and
works for all A € CRing.

A fruitful plan of developing new mathematics seems to be: Find/Take any six functor for-
malism and try to specialize all of the general abstract 6FF notions that we have learned to the
example. Anyhow, the next goal of the seminar will be to carry out this plan on the category of
topological spaces.
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