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Abstract
These are my (live) TeX’d notes of the European Autumn School in Topology 2025 with
invited lecturers Piotr Pstragowski and Joana Cirici.

I only ended up TeX’ing half of Joana’s course and since I didn’t manage to take satisfying
notes (shame on me), I decided to only include Piotr’s course here. I also did not type the
preparatory talks, gong show talks or contributed talks, but you can find my prison spectral
sequence preparatory talk on my https://qizhumath.wixsite.com/math/articles.

Piotr’s course was called Descent in stable homotopy theory and the following was his abstract:
The main calculational tool in the context of stable homotopy theory is given by the Adams
spectral sequence. The aim of this lecture series is to give a gentle introduction to this topic,
both from the perspective of descent and that of an intermediary between stable and abelian
categories. In particular, I plan to cover the following:

• The Adams spectral sequence of a ring spectrum, some classical calculations
• Homology theories, epimorphism classes, injective resolutions
• Encoding spectral sequences using deformations of stable ∞-categories
• Applications: monoidality of the Adams filtration, coherent multiplication on Moore

spectra.

Please contact me at qzhu@mpim-bonn.mpg.de (or over social media) for comments or sug-
gestions.
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1 The Adams Spectral Sequence

1.1 The Hurewicz Homomorphism and Adams Resolutions

Often one starts with a problem in geometry or arithmetic and it turns out that this often can be
translated into understanding [X, Y] for some X, Y ∈ Sp. Very often, π•Y = [S, Y]•.

Example 1.1.

(i) Consider maps Sn+k
top → Sk

top up to homotopy which amounts to πnS when k > n.

(ii) The following example gave rise to a few Fields medals! Let’s classify almost complex
manifolds up to bordism. This amounts to π•(MU). This was first done by Milnor and is
still one of the only ways to understand this problem.

(iii) Consider (higher) algebraic K-theory K•(R) ∼= π•K(R). A lot of study of algebraic K-theory
is the study of the spectrum K(R) which is better behaved than its homotopy groups.

Idea: Homology is usually easier to compute, so approximate π•(−) = [S,−].

Notation 1.2. We write H•(X) = H•(X; Fp) = π•(Fp ⊗S X) which is a graded Fp-vector space.

We will mostly work with p = 2.

Example 1.3. One has H•(S) ∼= π•(Fp ⊗S S) ∼= Fp[0]. This is already quite interesting, for
example it tells you S ̸≃ 0.

It is also the starting point of the Adams spectral sequence.

Construction 1.4. Let X ∈ Sp and consider the Hurewicz homomorphism

π•X → [S, X]• → HomVectFp
(Fp, H•X) ∼= H•X ∼= π•(Fp ⊗ X).

For example, for X = S, the unit in H•S ∼= Fp comes from idS.

Example 1.5. Let X = Σ∞
+RP∞. Then,

H•(X) ∼= H•(RP∞) ∼=


...
F2{x2} • = 2,
F2{x} • = 1,
F2{1} • = 0.

Homology has better functorial properties but cohomology has a multiplicative structure given
by H•(X) ∼= F2[x] with |x| = 1. Consider

Hur : π•(Σ∞
+RP∞) → H•(RP∞)

and it becomes a non-trivial question now whether 1, x, · · · come from the Hurewicz homomor-
phism. As such, the elements in the homology should be viewed as a proof that elements in the
homotopy groups are non-trivial.

Construction 1.6 (Adams Resolution). Let Fp = cofib(S → Fp). So there is a cofiber sequence

X Fp ⊗ X Fp ⊗ X.

Consider an element in π•X. Applying the Hurewicz leads to π•(Fp ⊗ X) and if this becomes
0, then exactness allows us to lift the element to π•+1(Fp ⊗ X). So we can try to play the same
game again. It leads to
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Fp ⊗ X Fp ⊗ Fp ⊗ X · · ·

X Fp ⊗ X Fp ⊗ Fp ⊗ X

where every triangle is a cofiber sequence, so it gives rise to long exact sequences on π•. Then,

A1 = π•
Ä

F
⊗s
p ⊗ X

ä
and E1 = π•

Ä
Fp ⊗ F

s
p ⊗ X

ä ∼= H•
Ä

F
⊗s
p ⊗ X

ä
.

is an exact couple, so we get a spectral sequence with E1 = π•
Ä

Fp ⊗ F
⊗s
p ⊗ X

ä
, called the

Adams spectral sequence which tries to converge to π•(X) up to completion.

1.2 Incorporating the Comodule Structure

There is more structure on H•(X), and as always in mathematics we should try to use the
maximal amount of structure given to us.

Observation 1.7. We have Steenrod operations Sqn : H•(X) → H•−n(X) for n ≥ 0. In other words,
H•(X) is an A∗-comodule., i.e. it has an action of Steenrod operations satisfying the Adem
relations and Sqn x = 0 for every x ∈ H•(X) and n ≫ 0.1

There is an action of the Steenrod algebra A• = F2[Sqn]n/(Adem relations) giving a module
structure A• ⊗F2 H•(X) → H•(X) and so a comodule structure ∆ : H•(X) → A∗ ⊗F2 H•(X).

About the coaction. Consider A• = [Fp, Fp]−• and so A∗ = H•(Fp) ∼= π•(Fp ⊗S Fp). This is a
coalgebra via

id⊗1 ⊗ id : Fp ⊗ X → Fp ⊗ Fp ⊗ X ≃ (Fp ⊗ Fp) ⊗Fp (Fp ⊗ X).

Applying π• and the Künneth isomorphism, we obtain the comultiplication

∆ : H•(X) → A∗ ⊗Fp H•(X).

Proof of Unstability. We can write X ≃ colim Xα as a filtered colimit of finite spectra, so2

H•(X) ∼= colim
α

H•(Xα)

and those terms are all finite-dimensional over Fp, so there are only finite many non-zero
Sqn-actions.

Remark* 1.8. I’m quite confused about the Steenrod operations and all the duals. It seems like above
we construct ∆ : H•X → A∗ ⊗F2 H•X which corresponds to A• ⊗ H•X → H•X, i.e. the usual Steenrod
operations. But there also seems to be a map H•X ⊗ A → H•X coming from

π•(X ⊗ Fp) ⊗ π−•(mapSp(Fp, Fp)) → π•(X ⊗ Fp)

coming from the evaluation map on Fp. Plugging in elements from A gives a right action on H•X which
seems to correspond to the usual left action on H•X under the duality H•X ∼= HomFp (H•X, Fp).

Consider forget : ComodA∗ → VectFp and so we now try to lift things to ComodA∗ .

Observation 1.9. Let X ∈ Sp and consider the Hurewicz homomorphism which lifts to a map

π•X → [S, X]• → HomComodA∗
(Fp, H•X) ⊆ H•X ∼= π•(Fp ⊗ X).

In particular, the Hurewicz image has those elements without Steenrod operations since Fp has
none.

1This is not always true for the cohomology of a spectrum.
2This is one reason why homology is better than cohomology.
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This is a first step into detecting whether an element lies in the image of the Hurewicz homo-
morphism.

Example 1.10. Recall 1.5. Since Sq1 x = x2 for RP∞, we have Sq1 x2 = x and this shows that x2

is not in the image of the Hurewicz homomorphism.

The functor forget : ComodA∗ → VectFp has a right adjoint R(−) = A∗ ⊗Fp − giving rise to the
cofree comodule.

Example 1.11. Let X ∈ ModFp (Sp), then π•(X) ∈ VectFp and

H•X ∼= π•(Fp ⊗ X) ∼= π•((Fp ⊗ Fp) ⊗Fp X) ∼= A∗ ⊗Fp π•X ∼= R(π•X).

Thus, the Hurewicz homomorphism is a map

π•X → HomComodA∗
(Fp, R(π•(X))) ∼= HomVectFp

(Fp, π•X) ∼= π•X

which can be checked to be an isomorphism. This shows that the map

π•X → HomComodA∗
(Fp, H•X)

is an isomorphism for X ∈ ModFp (Sp).

Example* 1.12. Consider X = Fp. Then, the Hurewciz homomorphism is

Fp → HomComodA∗
(Fp, A∗) ⊆ A∗

where the first map is the map picking out elements in A∗ with trivial Steenrod action. Those are
precisely those concentrated in degree 0, so we are picking out degree 0 elements of A∗.

Observation 1.13. Back to the Adams spectral sequence. Consider

E1
∼= π•

Ä
Fp ⊗ F

⊗s
p ⊗ X

ä ∼= HomComodA∗

Ä
Fp, H•(Fp ⊗ F

⊗s
p ⊗ X)

ä
by Hurewicz. On homology we have

H•(Fp ⊗ X) H•(Fp ⊗ Fp ⊗ X) · · ·

H•(X) H•(Fp ⊗ X) · · ·

d1 d1

0

The top row gives an injective3 resolution of H•(X) in comodules. It is a so-called Adams
resolution.

Theorem 1.14 (Adams).

(i) There exists an isomorphism E2 ∼= Exts,t
ComodA∗

(Fp, H•X).

(ii) If X is finite-type and bounded below, then this converges to π•(X∧
p ) ∼= π•(X) ⊗ Zp.

Why did this work? Essentially three steps.

(i) The Hurewicz map is an isomorphism for Eilenberg-MacLane spectra giving rise to this
identification of the E1-page.

(ii) H•(−) of Eilenberg-MacLane spectra is injective as comodules for the injective resolution.

(iii) H•(−) takes cofiber sequences to LESs for the injective resolution. Note here that we have
those injective maps by virtue of the Hurewicz homomorphism for Fp-modules (1.11). By
exactness, the bottom arrows must be 0 and thus the vertical arrows must be surjective.
This can be used as a diagram chase to see that the top row is exact.

3This uses that the right adjoint of an injective object is injective and everything in VectFp is injective. It also uses
that these triangles are short exact sequences.
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1.3 A Short Example

It’s time to draw an Adams chart.

Figure 1: This is from [Hat04, p. 599].

Example 1.15. Let X = S. Then, E2 = Exts,t
ComodA∗

(F2, F2).

(i) Let s = 0. Then, Ext0 = HomComodA∗
(F2, F2) ∼= F2[0]. This is the dot detecting the

identity.

(ii) Let s = 1. Then,

Ext1,t = Ext1(F2[t], F2) = {extensions in comodules F2 → M → F2[t]}.

So additively, we must have M ∼= F2 ⊕ F2[t]. There is only a single possible Steenrod
operation Sqt : F2[t] → F2. It can either be 0 or an isomorphism. When do we get a
comodule? There is e.g. the Adem relation Sq3 = Sq1 Sq2, so this already shows that Sq3

must act via 0. It’s a fact that exactly those Sq2n
can be taken as isomorphisms, and so we

get an element hn ∈ Ext1,2n
.

There is a Yoneda product on Ext giving rise to a multiplicative structure on the spectral
sequence. Plus, on the first horizontal part of the picture there are no differentials. There might
be one from h1 to 8, because 8 is non-trivial. From this picture we get

πk(S)∧2 = (Z2, Z/2, Z/2, Z/8, 0, 0, · · · )

allowing us to read off the first few stable homotopy groups of spheres.

2 Abstractification of Adams Spectral Sequence

It turns out you can abstractify some of the tools used for the Adams spectral sequence to TALK 2
17.09.2025generalize this. Let C be a stable ∞-category and A be an abelian category.

4



Qi Zhu EAST 2025

2.1 Homological Functors

Definition 2.1. A functor H : C → A is homological if it is additive and if for cofiber sequences
x → y → z in C the sequence H(x) → H(y) → H(z) is exact.

Remark 2.2. Since A is a 1-category, this factors uniquely through hC , as h is a left adjoint. So
these things can be phrased for triangulated categories.

Remark 2.3. Let x → y → z be a cofiber sequence. So we get

· · · Σ−1y Σ−1z x y z Σx · · ·

which gives rise to a LES

· · · H(Σ−1z) H(x) H(y) H(z) H(Σx) · · ·

This is how you should think in general if you don’t keep track of gradings (as opposed to
classical homology) which would be encoded by the (de-)suspensions.

Example 2.4.

(i) Consider π0 : Sp → Ab and R ∈ Sp. Then, R•(−) = π•(R ⊗ −) : Sp → grAb is
homological.

(ii) Let (C≥0, C≤0) be a t-structure, then π♡
0 (−) = τ≥0τ≤0(−) : C → C ♡ is homological.

(iii) Let H : C → A be a homological functor and F : D → C be an exact functor of stable
∞-categories, the HF : D → A is homological. Combining (ii) and (iii) recovers (i) as a
special case.

(iv) Let c ∈ C , then [c,−] = π0 mapC (c,−) : C → Ab is a homological functor and similarly
よc(−) = [−, c] : C op → Ab.

(v) The Yoneda embeddingよ : C → PSh(C , Ab) is homological. It factors through a fully
faithful functor

C PSh(C , Ab)

hC

よ

which arguably says that homological functors are a powerful tool to study stable cate-
gories. This fully faithful functor remembers all information of the homotopy category
through this homological functor.

2.2 The Freyd Envelope

Definition 2.5. A presheaf X : C op → Ab is finitely presented if there exists some f : c → d
such that X ≃ coker(よ(c) →よ(d)).

Definition 2.6. We write A(C ) ⊆ PSh(C , Ab) for the category of finitely presented presheaves,
called the Freyd envelope.

Note that this person is not pronounced ’Freud’ – as Ieke remarks.

Remark* 2.7. Since Ab is a 1-category, we can use adjunction to obtain PSh(C , Ab) ≃ PSh(hC , Ab) and
A(C ) ≃ A(hC ). In particular, we are dealing with 1-categories here.
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Theorem 2.8 (Freyd). The subcategory A(C ) ⊆ PSh(C , Ab) is an abelian subcategory, i.e. it is
closed under cokernels, kernels and extensions.

Remark 2.9. I asked about the relationship to A(C ) to PSh(C , Ab)ω and Marius answered that
they agree.

Remark 2.10. Consider ModR(Ab) ⊇ Modfp
R (Ab). Then, the subcategory is abelian if and only

if R is coherent.

Proof Sketch of 2.8. A priori there is no reason we’re allowed to take kernels. Let f : c → d
and consider Y = ker(よc → よd) ∈ PSh(C , Ab). Consider fib f → c → d and the preferred
comparison map

よ(fib f ) よ(c) よ(d)

Y = ker(よ( f ))

よ( f )

and it’s a quick diagram chase to show that this left vertical map is surjective. This only shows
finite generation but it turns out that you get finite presentation by modding out by the kernel
of that surjection.

Theorem 2.11 (Neeman). The functorよ : C → A(C ) is the initial homological functor out of
C , i.e.

C A(C )

A

よ

H
∃! exact

for a homological functor H : C → A .

Corollary 2.12. The notion of homological functors out of C depends only on hC as a category
(not the triangulated structure).

Proof. It only depends on exact functors out of A(C ) which ignores triangles.

2.3 Adapted Homology Theories

Definition 2.13.

(i) We say that H : C → A has lifts of injectives if A has enough injectives and for every
injective i ∈ A there exists ci ∈ C and a map H(ci) → i such that the composite

[−, ci] HomA (H(−), H(ci)) HomA (H(−), i)

is an isomorphism.4

(ii) We say that H is adapted if it has lifts of injectives for for every injective i ∈ A the map
H(ci) → i is an isomorphism.

Remark 2.14.
4In other words, HomA (H(−), i) is represented by ci.
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(i) Note that HomA (H(−), i) is a homological functor C op → A since i is injective. The
essence is the representability which essentially says that Eilenberg-MacLane objects exists.

Indeed, let C be presentable and H preserve (infinite) direct sums, then H has lifts of
injectives by Brown representability [PP23, Corollary 2.17].

(ii) Adaptedness says that the Hurewicz map [−, ci] → HomA (H(−), H(ci)) is an isomor-
phism.

(iii) The functor H•(−) : Sp → VectFp has lifts of injectives but is not adapted. Indeed,

HomVectFp
(H•(−), Fp) ∼= H•(−)

by duality, so it is represented by HFp. On the other hand, H•(Fp) ∼= A∗ ̸∼= Fp which
shows that it is not adapted. It turns out that H•(−) : Sp → ComodA∗ is adapted.

Construction 2.15. Let H : C → A be adapted with x ∈ C and f : H(x) ↪→ i using that A has
enough injectives. We lift this to a map x → ci in C where we can take the cofiber ci/x. We
proceed inductively by now lifting H(ci/x) ↪→ i1 and so on, so we obtain an Adams resolution

ci ci1

x ci/x · · ·

H-mono

with H(ci/x) ∼= i/H(x). For d ∈ C we get

E1 = [d, ci•] ∼= HomA (H(d), ci•)

where i• is an injective resolution of H(x). So this gives rise to

E2 ∼= Ext•,•
A (H(d), H(x)) ⇒ [d, x]•,

the H-based Adams spectral sequence.

Proof*. Injectivity is by construction. Moreover, these maps H(cofib) → ik are injective by construction.
Exactness implies that the dotted arrows are 0 on homology, so the vertical arrows are surjective on
homology. This can be used to diagram chase that ci• is a resolution.

2.4 Classification of Adams Spectral Sequences

Question 2.16. Can we classify adapted homological functors? In other words: Can we classify
Adams spectral sequences?

Example 2.17. Consider MU• : Sp → ComodMU• MU. It leads to the Adams-Novikov spectral
sequence.

Let C be idempotent complete.

Theorem 2.18 ([PP23, Lemma 2.55, Theorem 2.56]). Let H : C → A be homological such that
A has enough injectives. This leads to L : A(C ) → A . Then,

(i) H has lifts of injectives if and only if L has a right adjoint R : A → A(C ).

(ii) H is moreover adapted if and only if R is fully faithful, i.e. L : A(C ) → A is a Bousfield
localization.

Corollary 2.19. If H is adapted, then A ≃ A(C )/ ker L is the Gabriel/Serre quotient.

7
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Remark* 2.20. In fact, this is an ’if and only if’ [PP23, Theorem 2.56].

So understanding ker L is equivalent to understanding H. Let

X ≃ coker(よ( f ) :よ(c) →よ(d)) ∈ A(C ).

Then,

X ∈ ker L ⇐⇒ LX ≃ 0
⇐⇒ coker(Lよ( f ) : Lよ(c) → Lよ(d)) ≃ 0
⇐⇒ coker(H( f ) : H(c) → H(d)) ≃ 0
⇐⇒ f is an H-epimorphism.

The slogan is that adapted homology theories (i.e. Adams spectral sequences) are determined
by homology epis.

Corollary 2.21. The category ComodA∗ , as an abelian category, is completely determined by
the class of maps of spectra which are H•(−; Fp)-epis.

Proof. Indeed, ComodA∗ ≃ A(Sp)/ ker L by 2.19 where L comes from H•(−).

It’s quite magical that this is an invariant of Sp (and this choice of epimorphism class). Indeed,
ComodA∗ is a presentation of some category of quasicoherent sheaves on some stack but 2.21
has as consequence that it doesn’t depend on this presentation.

3 The Derived ∞-Category of a Homology Theory

Last lecture we constructed Adams resolutions associated to adapted homology theories (2.15). TALK 3
18.09.2025

3.1 Problem: Categorification of Adams Resolutions

There are some problems:

(i) There is in general no canonoical choice of an Adams resolution.

(ii) You can write down an Adams spectral sequence functor

C op × C → SpSeq, (d, c) 7→ E2(d, c).

On the other hand, SpSeq is almost always a shadow of a more homotopical construction,
namely a filtered spectrum. So we hope for:

Fil(Sp)

C op × C SpSeq

mapC (−,−)+Adams filtration

Mapping into the sequence of maps on the bottom row of 2.15 will give this filtration.

Question 3.1. Can we construct an ∞-category D(C , H) where Adams resolutions live and for
which we have an ’Adams resolution’ functor ν : C → D(C , H)?

8
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3.2 The Derived Category of an Abelian Category

About the abelian case: There is an assignment A ⇝ Ch(Inj) to the dg-category of chain
complexes of injectives. A clever combinatorial argument gives:

Definition 3.2. The derived ∞-category of A is D(A ) = Ndg(Ch(Inj)).

Fact 3.3. This is a stable ∞-category and there are homology functors Hk(−) : D(A ) → A

giving rise to the standard t-structure (D≥0(A ), D≤0(A )) with H0 : D(A )♡ ≃−→ A .

In particular, it has a unique inverse i : A → D(A )♡. This essentially sends A ∈ A to an
injective resolution in a coherent way.

Question 3.4. Can we characterize D(A )?

Observation 3.5. The functor i : A → D♭
≥0(A ) send SES in A to cofiber sequences.

Theorem 3.6 (BCKW, 2019). The functor i is the universal additive functor out of A such that
the target is additive and has finite colimits and the functor sends SES to cofiber sequences.

Remark 3.7. You can also consider A → D♭(A ) and then replace the word additive by stable.

We want to start mimicking the above behaviour with the following universal construction.

Definition 3.8. Let C be an additive ∞-category. Its prestable Freyd envelope

Aω(C ) ⊆ PShΣ(C , Sp≥0)

is the full subcategory generated under finite colimits by the image ofよ.5 We obtain a functor
ν : C → Aω(C ).

Remark 3.9.

(i) For every additive ∞-category with finite colimits D and additive functor f : C → D
there is a unique factorization

C Aω(C )

D
f

∃!L right exact

essentially by construction of Aω(C ) (by freely adjoining finite colimits).

(ii) The heart is the classical Freyd envelope Aω(C )♡ ≃ A(C ).

(iii*) There are two sensible ways of infinitizing the Freyd envelope and this is the one which
Patchkoria-Pstragowski call perfect prestable Freyd envelope [PP23, Definition 4.20].

Theorem 3.10 ([PP23, Theorem 4.26]). Let C be an additive ∞-category with finite limits. Then,
Aω(C ) also has finite limits.

Comment*. This is quite a bit of work in the paper. See also [PP23, Remark 4.23] for a remark on the crux
of difficulty.

The classical theorem of Freyd only requires weak limits, here you actually need limits.

Corollary 3.11. Let C have finite limits. Then, Aω(C ) is the connective part of a t-structure on
its Spanier-Whitehead stabilization: Aω(C ) ≃ (Aω(C )st)≥0.

5Note that Sp≥0 is the free additive ∞-category on a single object, and hence an ∞-categorical analogue of Ab.

9
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Observation 3.12. Let A be abelian. Consider

A Aω(C )

D♭
≥0(A )

ν

L

then L forces the image of SESs in A to be cofiber sequences.

In that regard, we are pretty close to D♭
≥0(A ).

3.3 Relations via Sheaf Theory

Definition 3.13. An additive ∞-site is an additive ∞-category with an Grothendieck pretopol-
ogy such that covering families { fi : ci → c}i are singletons.

Example 3.14.

(i) If A is abelian, then it can be made into an additive site with coverings being epimor-
phisms [PP23, Definition 5.5].

(ii) Let H : C → A be a homology theory. Then, C becomes an additive ∞-site where
coverings are H-epimorphisms.

Theorem 3.15 ([Pst23, Theorem 2.8]). Let C be an additive ∞-site and X : C op → Sp≥0 be an
additive functor. TFAE:

(i) X is a sheaf.

(ii) For every covering p : d → c the sequence

X(c) X(d) X(fib p)

is a fiber sequence.

Remark 3.16. I.e. ν(fib p) → νd → νc is a cofiber sequence of sheaves.

Fact 3.17. Let C be an additive ∞-site and consider the free cocompletion under colimits inside
additive ∞-categories PShΣ(C , Sp≥0). Then,

ShΣ(C , Sp≥0) ↪→ PShΣ(C , Sp≥0)

is a free completion subject to the relation fib p → d → c is a cofiber sequence for every covering
p. There exists a sheafification functor L : PShΣ(C , Sp≥0) → ShΣ(C , Sp≥0).

Corollary 3.18. The functor L is left-exact.

Theorem 3.19. Let A be abelian. Then, D♭
≥0(A ) ≃ Aω(C )∩ShΣ with the epimorphism topology

on A .6

Definition 3.20. Let H : C → A be an adapted homology theory. Then,

D♭
≥0(C ; H) = Aω(C ) ∩ ShΣ

= {X : C op → Sp≥0 : a → b
p−→ c with (∗)}

where (∗) is that if this is a cofiber sequence with p an H-epi, then X(c) → X(b) → X(a) is a fiber
sequence and X ∈ Aω(C ).

We denote by ν : C ↪→ D♭
≥0(C ) the Yoneda embedding.

6These are also called perfect.

10



Qi Zhu EAST 2025

Equivalently, D≥0(C ; H) is built from the representables ν(c) = (τ≥0 map(−, c))# for c ∈ C by
closing under finite colimits and desuspensions.

Theorem 3.21. The standard t-structure on Sh(C , Sp) restricts.

(i) The category D♭
≥0(C ) is a prestable ∞-category with finite colimits, so D♭

≥0(C ) ≃ (D♭
≥0(C )st)≥0

and D♭(C ) = D♭
≥0(C )st.

(ii) There is an equivalence D♭(C )♡ ≃ A .

(iii) The composite

C D♭
≥0(C ) D♭(C )♡ ≃ Aν τ≤0

is equivalent to H.

The functor ν : C → D♭(C ) is about lifting H from being valued in an abelian category to a
functor valued in a stable ∞-category with a t-structure. Moreover, ν is fully faithful, so it really
stores all of the information from C .

4 Towards Deformation Theory

4.1 Deformation Theory

Let’s start with some examples of the derived ∞-categories that we constructed last lecture. TALK 4
19.09.2025

Example 4.1.

(i) Let A = A(C ) and consider the universal homology theory. Then,

D♭
≥0(C ) ≃ Aω(C ) ≃ PShΣ(C ).

This is the largest derived category.

(ii) Let A ≃ 0. Then, ν : C
≃−→ D♭(C ). This is the smallest derived category.

(iii) Let E ∈ Sp be nice enough, say Adams-type. Consider E• : Sp → ComodE•E. Then,
D♭(Sp, E•) ↪→ SynE into the E-based synthetic spectra where the left side is the thick
subcategory generated by νX for X ∈ Sp. This is the minimal thing in SynE containing
the representables, so it is enough to talk about Adams spectral sequences.

Idea: The category D♭(C , H) is a categorical deformation interpolating between C and D♭(A ).
The mapping spaces of D♭(A ) are Ext-groups which should be the E2-page while the mapping
spaces in C are just mapping spaces, i.e. the abutment.

Observation 4.2. Assume: If x → y is H-epi, then Σkx → Σky is H-epi for all k. Then,

C A

C A

H

Σk [k]

H

from the quotient universal property via the Freyd envelope, so we get a canonical autoequiva-
lence, i.e. H(Σkx) ≃ H(x)[k].

Example 4.3. Let H = H•(−; Fp), then [k] is the grading shift. We get

11
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C D♭(C )

C D♭(C )

ν

Σk [k]

ν

Observation 4.4. Let ν : C → D♭
≥0(C ) leading to a canonical comparison map

Σν(c) ν(Σc) ≃ ν(c)[1]

which gives rise to a canonical natural transformation ΣX → X[1] for all X ∈ D♭(C ) or
equivalently τ : ΣX[−1] → X. This gives rise to the deformation picture

D♭(C )

C D♭(A )

τ−1 −/τ=Cτ⊗−

where on the right side ⊗ doesn’t quite make sense in this generality since there is in general
not a monoidal structure. Nonetheless we use this notation for −/τ since Cτ ⊗− has become
the classical notation.

Theorem 4.5.

(i) There is an equivalence C ≃ D♭(C )[τ−1].

(ii) The endofunctor Cτ ⊗ X ≃ cofib(τ : ΣX[−1] → X) in X has a canonical monad structure
and ModCτ(D♭(C )) ≃ D♭(A ).7

Proof Idea. Concretely, τ is given by

Σν(c)[1] ≃ Σν(Σ−1c) ≃ Στ≥0 map(−, Σ−1c)# ≃ τ≥1 map(−, c)# → τ≥0 map(−, c)# = ν(c),

the 1-connective cover of ν(c). Thus, we deduce Cτ ⊗ ν(c) = ν(c)/τ ∈ D♭(C )♡.

This implies that ModCτ(D♭(C )) is generated by objects in the heart. In particular, it is a derived
category of an abelian category

D♭(C ) D♭(A )
H∗

H∗

induced by H : C → A . One checks that the adjunction H∗ ⊣ H∗ is monadic and that the
associated monad can be identified with Cτ ⊗−.

4.2 Adams Resolutions

Let’s go back to

Fil(Sp) = Fun(Zop, Sp)

C op × C SpSeq

F• mapC (−,−)

that appeared in 3.1.

Construction 4.6. Let c ∈ C . We get

7So Cτ ⊗− ∈ End(D♭(C )) is an algebra therein.
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τ≥1 mapC (−, c)# τ≥0 mapC (−, c)# τ≥−1 mapC (−, c)# · · ·

Σν(c)[−1] ν(c) Σ−1ν(c)[1] · · ·τ τ

giving rise to V•(c) ∈ Fil(D♭(C )) with Vn(c) = Σnν(c)[−n]. For d ∈ C we then put

F• mapC (d, c) = mapD♭(C )(d, V•(c)) ∈ Fil(Sp).

Then,

(i) colim F• mapC (d, c) ≃ colimk τ≥k map(d, c)# ≃ colim τ≥k map(d, c) ≃ map(d, c).

(ii) There is an equivalence

gr F• mapC (d, c) ≃ mapD♭(C )(νd, Σnν(c)/τ[−n])

≃ mapCτ(νd/τ, Σnν(c)/τ[−n])
≃ mapD♭(A )(H(d), ΣnH(c)[−n]),

so its homotopy groups are given by ExtA. In fact, the spectral sequence associated to
F• mapC (d, c) is the H-ASS via some functoriality arguments.

Let R ∈ Alg(Sp) and X, Y ∈ Sp. Then, one can write down a cosimplicial diagram

R ⊗ X R ⊗ R ⊗ X · · · ,

the Amitsur resolution which corresponds to a filtered spectrum by the Dold-Kan correspondence.
Then,

F̃ mapSp(Y, X) ≃ Tot(τ≥• map(Y, R⊗•+1 ⊗ X))

where Tot ◦τ≥• is the décalage. This is the R-Adams filtered mapping spectrum. That’s one
reason classically this lift problem (3.1) is usually not discussed. That one is a non-canonical
resolution while we can just write down a canonical resolution as above.

Let R ∈ CAlg(Sp), then
F̃ mapSp(S, X) = Tot(τ≥•AR)

gives a lax symmetric monoidal functor Sp → Fil(Sp), the R-Adams filtration functor.

Our final goal is to describe such a functor without the assumption R ∈ CAlg(Sp).

Observation 4.7. Assume that R has a right unital multiplication. Then, there is a homology
theory H : Sp → Ab such that f : X → Y is H-epi if and only if R ⊗ X → R ⊗ Y has a section.
The H-epis are closed under −⊗Sp − giving rise to a unique symmetric monoidal structure on
D♭(Sp) such that ν is symmetric monoidal.

Theorem 4.8. Let R be a spectrum with a right-unital multiplication. Then, the R-Adams
filtration functor

Sp Fil(D♭(Sp)) Fil(Sp)
V•(−) map(νS,−)

is lax symmetric monoidal.

13
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4.3 Multiplicative Structure on Moore Spectra

Let p be odd. It is known that S/p is a homotopy associative unital ring (but not E1).

Theorem 4.9 (Burklund). The Moore spectrum S/pn+1 can be made En.

Idea. Since S/p has a right unital multiplication, we obtain a symmetric monoidal structure
on D♭(Sp, S/p) where he sets up an obstruction theory to make something into a ring. He
shows that the obstructions vanish for νS/(p/τ)n+1. So νS/(p/τ)n+1 ∈ AlgEn

(D♭(Sp, S/p)) and
applying τ−1 lets us land in Sp.

This makes much use of the lax symmetric monoidal S/p-Adams resolution allowing us to
preserve algebras! It can now be done despite S/p not having much structure – we only need it
to have a right unital multiplication (4.8).
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