
Qi Zhu Generalizations of Topology – Fractured Structure on Condensed Spaces

Abstract

The concept of a topology is ubiquitous throughout mathematics. But even such a basic
notion can come to its limits with various scenarios where the naive notion of a topology
does causes several problems. In this talk we want to discuss certain ways of fixing these
problems through condensed mathematics as well as cohesive/fractured structures on topoi.
In particular, we will compare try to compare these notions which amounts to a fractured
structure on condensed spaces.

Everything in this talk can and should probably be done in the ∞-world. However, just
for the sake of this talk it makes no difference, so modulo the last section we will stick to
a 1-categorical language for simplicity. The ∞-categorically minded person can however
roughly just always replace Set by An and then basically everything said in this talk
generalizes.

Anything new said in this talk (if anything) here is joint with Nima Rasekh.
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1 Topology

We were all introduced to the notion of a topology early on - namely already in our first analysis
lectures and for example used compactness to formulate the extreme value theorem from
Bolzano and Weierstraß. Later we went on finally starting to study algebraic topology, e.g.
through Stefan Schwede’s lecture series, and learned about different invariants and construc-
tions in topology. On the other hand, this notion of closeness also pertains most other parts of
mathematics: be it algebraic geometry, number theory, functional analysis or probability theory.
Nonetheless, even a notion as basic and ubiquitous as topology can have flaws.

1. Algebra: There are certain problems combining topology and algebra. For example, the
category of topological abelian groups TopAb is not abelian since idR : Rdisc → Reucl has
trivial kernel and cokernel but is not an isomorphism. So it becomes difficult to perform
homological category on this category. Similar examples would be Lie groups or group
schemes.

2. Homotopy Theory: When working with homotopy types like the ∞-category of spaces/an-
ima An, we can model spaces with actual spaces (i.e. CW complexes/Kan complexes).
However, we forget much of its information and in particular the geometry/topology. For
example, the topological spaces R and D2 are quite different but as homotopy types they
are both equivalent to a point ∗.

Moreso, a topology is by definition a collection of open sets on a set. In particular, we need
an underlying set to talk about a topology. However, it sometimes seems helpful to ask for a
topology on objects without a naturally underlying set.

Therefore, the quest for an axiomatization of certain properties of topology begins. We introduce
two relevant notions: condensed mathematics and cohesive/fractured structures on a topos.

2 Some Topos Theory

The raison d’être of Grothendieck topoi is that they form the ideal universe in which one can do
geometry. Indeed, a geometer wants to study geometric categories such as Top, Mfld, Sch, Var
and so on but these categories are often ill-behaved. For example, Mfld and Sch do not admit
all colimits. To remedy this problem the first naive attempt is to freely adjoin all colimits, i.e. to
take the free cocompletion which amounts to taking the presheaf category:

C ⇝ PSh(C ).

However, these newly added colimits do not relate with the pre-existing colimits, so we need to
demand additional conditions. Having done that, we end in a category of sheaves.

C ⇝ PSh(C )⇝ (a : PSh(C ) → Sh(C , J)).

This is the concept of a Grothendieck topos.

Definition 2.1. Let C be a category. Then, PSh(C ) = Fun(C op, Set) is the presheaf category of
C .

Definition 2.2. A Grothendieck topos is a full subcategory G ↪→ PSh(C ) for some category C
which admits a left-exact1 left adjoint a : PSh(C ) → G .

Remark 2.3. Alternatively, a Grothendieck topos is a category which is equivalent to a sheaf
category, i.e. a full subcategory of a presheaf category satisfying certain gluing conditions.

1I.e. finitelimit preserving.
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Example 2.4. The prime example of a Grothendieck topos is the category of sheaves Sh(X) on a
space X.

All of this generalizes to the world of ∞-categories roughly by replacing the 1-category Set by
the ∞-category An. Topoi have amazing properties!2

3 Condensed Mathematics

We motivate condensed mathematics via the Yoneda formalism. Let T be a full subcategory of
Top. Consider the restricted Yoneda embedding:

Top → Fun(T op, Set), (X 7→ HomTop(−, X) : T op → Set).

There are the two following extreme cases:

1. If T = ∗, then this is the forgetful functor Top → Set.

2. If T = Top, then this is the Yoneda embeddingよ : Top → PSh(Top).

It’s an insights from Clausen-Scholze and Barwick-Haine that T = CHaus works really well
and it’s an explicit computation that the restricted Yoneda embedding is faithful in this case
(even after passing to sheaves).

Definition 3.1 (Clausen-Scholze 2019). A condensed set is a sheaf of sets on CHaus with
coverings the jointly surjective families of maps.

Unravelled, a condensed set is a functor X : CHausop → Set satisfying the following properties:

(i) X(∅) = ∗,

(ii) For S, T ∈ CHaus the natural map

X(S ⨿ T) → X(S) × X(T)

is bijective.

(iii) For any surjection S′ → S in CHaus with projections p1, p2 : S′ ×S S′ → S′ the map

X(S) → {x ∈ X(S′) : p∗1(x) = p∗2(x) in X(S′ ×S S′)}

is bijective.

The same definition with sheaves of abelian groups defines condensed abelian groups.

Theorem 3.2. The category of condensed abelian groups is a nice abelian category.

Proof. See [Sch19, Theorem 1.10].

Definition 3.3. A condensed anima is a (hypercomplete) sheaf of anima on CHaus with
coverings the jointly surjective families of maps. We denote the ∞-category of condensed anima
by Cond(An).

Remark 3.4. It’s probably not the best terminology to call this a condensed space since condensed
points to a topological aspect and so does a space. But really we want to use the condensed part
to model the topology while we are really interested in the homotopy type for the latter being
the soul of the model, i.e. the anima.

2E.g. they admit (sub-)object classifiers and have (weak) descent.
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4 Cohesion

We will begin with the more classical notion of a cohesive topos first developed by William
Lawvere [Law07]. Urs Schreiber generalized it to the ∞-world in his Differential cohomology in a
cohesive infinity-topos [Sch13]. The word cohesion is inspired from chemistry which describes
how molecules stick together. In that sense mathematical cohesion is supposed to describe how
points ’cohere’ or ’stick together’.

Let us start with a set, then there are two universal ways of endowing a topology on this set.
Either we take the finest topology or we take the coarsest topology on this set. In jargon, we
take the discrete resp. the codiscrete topology. These yield two fully faithful functors which
result in a triple of adjoint functors

Top Set.U

Disc

CoDisc

If we choose Top nice enough, e.g. only taking locally path-connected spaces, then there is a
further left adjoint π0 ⊣ Disc which yields the adjunction quadruple

Top Set.

π0

U
Disc

CoDisc

This is the prime example of cohesion.

Definition 4.1. Let X be a topos3 over a topos Y via the map f∗ : X → Y .

(i) If f∗ admits fully faithful adjoints

X Y ,f∗

f ∗

f !

then X is called local over Y .

(ii) It X is local over Y and f ∗ admits a further left adjoint f! which is product-preserving,
then X is called cohesive over Y .

X Y

f!

f∗

f ∗

f !

So if X is cohesive over Y , then Y embeds in two ways into X , namely via f ∗ and f !.

Definition 4.2. Let X be an topos and let ∗X be a terminal object in X . Then, the global
sections functor is given by

Γ = HomX (∗X ,−) : X → Set, F 7→ HomX (∗X , F ).
3Everything can be done a bit more generally than over topoi, so over motivating example is still valid.
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Since Γ is limit-preserving, it admits a left-adjoint Disc : Set → X by the Adjoint Functor
Theorem. In fact, it can be described explicitly as Disc = ∗X ⊗− : Set → X .

Definition 4.3. Let X be a topos.

(i) If Γ : X → Set is local, then X is a local topos.

(ii) If Γ : X → Set is cohesive, then X is a cohesive topos.

Remark 4.4. If X is a cohesive topos, then we will employ the following notation:

X Set

Π

Γ
Disc

CoDisc

The notation follows our geometric intuition:

• The functor Π is like the set of connected components of a space.

• The functor Disc is like the discrete ’topology/cohesion’.

• The functor Γ is like the global sections functor.

• The functor CoDisc is like the codiscrete ’topology/cohesion’.

Compare this with the motivating example!

Example 4.5. The homotopy theorist’s favourite cohesion might be

sSet Set.

π0

(−)0

const

E

where E denotes the bar construction.

Example 4.6. There is cohesion in global homotopy theory: Let G be a compact Lie group, then
there is cohesion

(TopGlo)/BG G-Top.

ΠG

ΓG

∆G

∇G

which we will not further elaborate on. See [Rez14, Chapter 5].

5 Fractured Structure

Cohesion is nice but sometimes the topos in question is simply not cohesive. This happens in
the condensed setting! So instead one may try to weaken our notion and try to obtain a slightly
more general concept that contains more objects but still keeps many of the nice properties
of cohesion. This will be the notion of a fractured structure developed by Lurie [Lur18] and
Carchedi [Car20].

Definition 5.1. Let X be a topos. A subcategory j! : X corp ↪→ X is a fracture subcategory if it
satisfies the following conditions:
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(i) If X ∈ X corp and f : X → Y in X is an isomorphism, then f belongs to X corp.

(ii) The category X corp admits pullbacks and these are preserved by j!.

(iii) The inclusion functor j! : X corp ↪→ X admits a right adjoint j∗ : X → X corp which is
conservative and preserves small colimits.

X corp X
j!

j∗

(iv) For every map U → V in X corp the diagram

j∗U j∗V

U V

given by the counit j! j∗ ⇒ idX is a pullback in X .

A fractured topos is a pair X corp ↪→ X where X is a topos and X corp is a fracture subcategory
of X .

It will turn out that X corp is a topos, so then the condition that j∗ preserves small colimits is
equivalent to it admitting a right adjoint. So we then obtain a triple adjunction

X corp X

j!

j∗

j∗

Remark 5.2. Intuitively, a fractured structure is locally a cohesive structure. This is not com-
pletely true but at least almost, namely in the following sense.

Let j! : X corp ↪→ X be a fractured topos and X ∈ X corp. Since j∗ : X → X corp preserves
small colimits, it admits a right adjoint j∗ : X corp → X by the Adjoint Functor Theorem. In
particular, this yields a triple adjunction for slice categories4

X
corp
/X X/X

(j!)/X

(j∗)/X

(j∗)/X

Here, (j!)/X is fully faithful and preserves fiber products by definition. It preserves the terminal
object idX ∈ X/X and so it preserves finite limits. So the requirements for the Adjoint Functor
Theorem are almost fulfilled to yield another left adjoint of (j!)/X. It is furthermore preserves
products, then this would result in a quadruple adjunction realizing a cohesive structure.

4The passage to slice categories is what we mean by the word ’locally’.
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6 Comparison of Fractured Structures with Condensed Mathematics

We have presented two ways of doing topology and now we want to compare these.

Lemma 6.1. The ∞-topos Cond(An) is not a cohesive ∞-topos.

Let CHausinj denote the wide subcategory of compact Hausdorff spaces with injections as maps
and finitely jointly surjective morphisms as covers. Then, the inclusion i : CHausinj → CHaus
induces via Kan extension a triple adjunction

PSh(CHaus) PSh(CHausinj).i∗

i!

i∗

We denote by Condinj(An) the category of sheaves on CHausinj, then one can show that the
diagram extends to a triple adjunction of sheaf categories

Cond(An) Condinj(An).i∗

i!

i∗

Lemma 6.2. The functor i∗ is not a geometric morphism.

So it doesn’t even make sense to ask whether Cond(An) is cohesive over Condinj(An) via i∗.

Theorem 6.3. There is a triple adjunction

Cond(An) Condinj(An)i∗

i!

i∗

yielding a fractured structure on the ∞-topos of condensed anima.

Proof Sketch. Use/Study the machinery of admissibility structures by Lurie [Lur18, Chapter
20.2, 20.3, 20.6], define a suitable admissibility structure on CHaus and check compatibilities
with everything floating around.

7 Outlook

We have the following remaining goals for the project:

• Can we generalize An to an arbitrary ∞-topos X ?

• Can we use this fractured structure to obtain certain results in the computation of co-
homology groups? The hope is to get a formal argument for rather ε-heavy proofs by
Clausen-Scholze.

And as always in mathematics, this is only a fractured part of what can be possible...
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