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Abstract

This is an introductory /recap talk to the theory of spectral sequences.

A spectral sequence is an algebraic workhorse that takes a filtration on an object

Co C1 Co cee c

and tries to piece together the object ¢ from the filtration quotients through certain algebraic
information. This algebraic information often comes from a t-structure on a stable oo-
category which we introduce in the beginning of the talk. Then, we explain how to obtain a
spectral sequence from a filtered object following Lurie. Having set these up, we discuss
several examples from topology and algebra, ranging from the Serre spectral sequences
and its relatives, consequences of the Grothendieck spectral sequence to the Adams spectral
sequence.

The prison theme somehow came to me while devising the introduction of this talk. I enjoy
fun gimmicks and jokes in talks and hope that this is a refreshing one.

This is a talk given at the European Autumn School in Topology 2025.
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0 Prison Captive: Inside a Prison Camp

0.1 A History Lesson
We should begin with some history.

Muyth (Vakil). Spectral sequences are called spectral” because, like spectres, spectral
sequences are terrifying, evil and dangerous. I have heard no disagree with this
interpretation, which is perhaps not surprising since I just made it up [Vak24, p. 63].

Alright, that was fake history! Onto some real history.

World war 2 broke out. Jean Leray was an officier in the French army and was arrested by the
Germans when France was occupied by Germany. He was brought to an officers” prison camp
in Edelbach, Austria. Leray’s main interests lied in analysis but he feared that his expertise
in applied mathematics could lead to him being forced to support the German war effort. So
he only mentioned experience in an opaque field instead: topology. In these prison days the
concept of spectral sequences was born [McC99, Section 3].

So you might say we are doing prison’s work at this EAST but I think the moral of the story is
that no matter what hardships you are or will be going through — even if you land in prison,
you may still be able to produce groundbreaking mathematics in there.

0.2 Desiderata

Suppose that we are in prison, so we are tasked with the study of spectral sequences.!

In homological algebra we learn the omnipresent concept of a long exact sequence: Say we have
a short exact sequence of chain complexes

0 Co C C/Cy — 0,

then, this induces a long exact sequence on homology groups H,. In other words, we want to
understand C by piecing together a subobject Cy and the corresponding quotient C/Cy.

Phrased a bit more generally, let ¢ be a stable co-category and ¢ € ¢. Consider a map ¢y — ¢
together with its cofiber ¢cg — ¢ — ¢/cp and we want to understand ¢ by gluing together certain
algebraic information about ¢y and ¢/cp. This is the baby case of a spectral sequence: Instead of
consider a 1-stage filtration

0 co c
Co c/co

we may consider a general filtration

CO C1 o« o e C
co/cq c1/co

and wish to study ¢ by virtue of the filtration quotients. In practice, there should be some
algebraic information that we can extract — often coming from a t-structure — which we piece
together through a spectral sequence. In other words, there should be some sort of functor

Fil(¢) — SpSeq(¢")

from filtered objects on a stable co-category 4 with a t-structure to spectral sequences valued in
the heart €.

IBest prison I've ever been in.
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1 Prison Sentence: Crash Course on {-Structures

Throughout the entire talk, unless otherwise mentioned, let ¢ be a stable co-category, potentially
equipped with a t-structure, defined as follows:

Definition 1.1 (Beilinson-Bernstein-Deligne, 1983). A t-structure on % is a pair of full subcate-
gories (¢, €<o) on ¢ satisfying:

(i) If c € €>o, e €<0, then Xc € ¢>p and Qc € <.
(ii) If c € €0, ¢’ € €<o, then Map..(c, Qc) ~ .

(iii) For every c € ¢ there exists a fiber sequence

C>) —> C — <1

with >0 € ngo and ZC§_1 € ngo.
We call €~ resp. ¢<o the connective resp. coconnective parts of €.
Remark 1.2. With a little argument a t-structure on ¢’ is the same thing as a t-structure on h%'.

Often, it’s easier to describe just the connective or just the coconnective part of a t-structure.
However, the other part is already determined.

Lemma 1.3 ([Win24, Lemma 10.4]). There are equivalences

¢>0 =~ {c € € : Mapy(c, 0’) ~ x forallc’ € ¢<p},
C<o~ {c' € € :Map,(c, ") ~ x forallc € ¢>p}.

Notation 1.4. Let n € Z. We write 6>, = X"%¢>¢ and ¢<_, = (V'¢<o.

The following is probably responsible for the etymology of t-structures; namely tronque, or
truncation [Hum].

Proposition 1.5. Let m € Z.

(i) There is a Bousfield localization 1<, : € — %<, as well as a Bousfield colocalization
T>m : € — %Zm.

(ii) There is a natural equivalence T<;, 7>, = T>,T<y of functors € — €< N E>y.
Proof.

(i) Comparing adjunctions, one can check 7>, ~ X"1>00Q", so WLOG m = 0.

Adjunctions can be constructed objectwise, so it suffices to show that for c € ¢~ and
¢’ € € the natural map
Map,,_(c, %0) = Map,(c,c’)

is an equivalence. But the fiber sequence ¢, — ¢’ — ¢__, from 1.1(iii) induces a fiber
sequence

Map.,(c, C/zo) —— Map,(c,c’) —— Map,(c, Clgq)

and the last term is trivial by 1.1(ii).

(ii) See [Lurl7, Proposition 1.2.1.10].
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O
Definition 1.6.
(i) The heart of the t-structure is €% = %0 N G<o.
(ii) We define 1y = T>oT< : € — €V and 71, = Q" : € — € forn € Z.
Proposition 1.7 ([Lurl7, Remark 1.2.1.12]). The heart ¢ is an abelian (1-)category.

Proposition 1.8 ([Win24, Proposition 10.8]). Let ¢ — ¢ — ¢ be a fiber sequence in ¢. Then,
there is a LES

. —— TT,C 7T,,C e —— 7m0 —— -

in¢".
Example 1.9.
(i) There is a t-structure (Sp, Sp~(, Sp~() consisting of (co-)connective spectra.

(ii)) Let R € CRing, then the derived co-category D(R) has a t-structure (D(R)>o, D(R)<o)
controlled by homology.

One could combine the previous two points into the same definition by taking the derived
co-category of a connective [E;-ring spectrum R [Ant24, Example 2.13(b)].

(iii) Let E be a nice spectrum. Piotr defined the so-called co-category of synthetic spectra Syn
with a natural ¢-structure whose heart is Syng ~ Comodg,g [Pst23, Proposition 4.16]. We
will see more about this category in this autumn school.

There is still a lot of interesting current research on t-structures but that would stray us too far
for mere prison inmates.

2 Prison Work: Spectral Sequence from Filtered Objects

2.1 Construction of Spectral Sequence

Classical approaches e.g. via exact couples are arguably more intuitive but we will sketch
Lurie’s construction [Lurl7, Section 1.2.2]. There is an equivalent construction via décalage due
to Antieau [Ant24].

Definition 2.1. Let ¥’ € CatSl. A filtered object of ¥ is a functor X : Z — €. The co-category
of filtered objects in € is denoted by Fil(¥).

We visualize this as a sequence of objects and maps

X 4 Xo X;

together with homotopies of composites. Lurie constructs a bunch of auxiliary objects through
Kan extensions [Lurl7, 1.2.2.2 — 1.2.2.4] but it seems like the main essence lies in the following:

Construction 2.2. Let ¢ be a stable co-category with a t-structure and X € Fil(%).
(i) Consider the objects
Ef/q = im (np+q(Xp/Xp—r) — 7Tp+q(Xp+r—1/Xp—l))

where the map is induced by the filtration structure maps of X.
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(ii) Restricting the connecting homomorphism coming from the cofiber sequence

Xp—l/Xp—r—l — Xp+r—l/Xp—r—1 — Xp+r—l/Xp—1

yields a differential d, : EF1 — Ef—rr”l“—l.
The spectral sequence associated to X is {E}”, dr}rpg-

So the r-th page of the spectral sequence takes into account r steps of a filtration and their
filtration quotients. The magic is that these fit together conveniently to extract a lot of interesting
information. To me it’s still mysterious why Lurie’s construction actually works and would be
happy about any further intuition.

Example 2.3. The E;-page is given by Ef A= Tp+q(Xp/ Xp—1) with differential
dy : Ef/q = 7Tp+q(Xp/Xp71) — 7Tp71+q(prl/Xp—2) = Ef_llq

given by the connecting homomorphism.

Theorem 2.4 ([Lur17, Proposition 1.2.2.7]). The spectral sequence {E}", dy }r,p,q associated to X
is a spectral sequence in €, i.e. it consists of:

(i) objects EP1 e € forr > 1 and p,q€Z,
(ii) differentials a7 : E/'T — EF AL for >land p,q € Z,

(iii) isomorphisms H*(E;*) = E7";.

Lurie states (without proof) that this recovers the usual spectral sequence associated to a filtered
complex [Lurl7, Example 1.2.2.11].

2.2 Convergence

A spectral sequence on its own doesn’t yet need to make a statement about the object we are
studying. For this we are need to understand the concept of convergence.

We will not go in depth and only treat the simplest case as discussed in [Lurl7]. For more
precise treatments we refer the listener to [Boa99].

Proposition 2.5 ([Lurl”, Proposition 1.2.2.14]). Suppose that 4" admits sequential colimits and
that the t-structure on ¢ is compatible with sequential colimits, i.e. that ¢>¢ is closed under
sequential colimits in ¢. Let X € Fil(¥) with X, >~ 0 for n < 0. Then, the associated spectral
sequences converges:

EM = Tlptq (colim Xn) ,
n
where Tlp+q (colim, X},) is called abutment of the spectral sequence, i.e.:

(i) For fixed p, g the differentials d, : EPT — EP A1 Ganishes for r > 0.

q

So for r >> 0 there is a sequence of epimorphisms E/? — EI', — EPl, — ... and we set

r+1 r+
EXT = colim, EP! in €°.

(ii) Letn € Z and H,, = 7,, colim, X,. Then, there exists a filtration thereon:

+e—s F'H, —— F°H, —— F'H, —— ---
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of H, with F"H,, = 0 for m < 0 and colim,, F"H, = H,.
(iii) For every p, q there are isomorphisms EL’ = F? Hyy4/F *1Hp+q in€".

Typically,? the filtrations in (ii) and the isomorphisms in (iii) are part of the structure of conver-
gence.

3 Prison Release: Examples of Spectral Sequences

It’s time to release you from the prison.

3.1 Spectral Sequences in Topology

Example 3.1. Let p : E — B be a Serre fibration of spaces with (homotopy) fiber F and simply
connected B. Suppose that B is a CW complex® with skeleton @ = B_; C By C - -- C B which
induces a filtration {E; = p~'(By)}x on E.

(i) This induces a filtration on the associated singular cochain complex C*(E) via C*(E/Ey)
which leads to Serre’s spectral sequence

EY? = HP(B, H(F)) = HF1(E)
from his PhD thesis. It takes an argument to see that this is the E;-page.

(ii) If A is a spectrum, we can instead consider a filtration on mapsp(E, A) which leads to the
Atiyah-Hirzebruch spectral sequence

E; . = HP(B, A1(F)) = AP(E).

Convergence is less clear here.* There is also an alternative construction by filtering A
instead of E, first shown by Maunders [Ant24, Corollary 9.3]. Namely, one takes the
Whitehead filtration of A. An upshot is that the E!-page is not ‘canonical’ but it becomes
so on the E>-page. On the other hand, when filtering A, its E'-page is immediately this E?
page as described above — related by a décalage.

(iii) Let N < G be a normal subgroup of a discrete group G. The Serre spectral sequence
applied to the fiber sequence BN — BG — B(G/N) recovers the Lyndon-Hochschild-Serre

spectral sequence
E}? = HP(G/N, HY(N)) = H"™(G)

on group cohomology.

The following example solely made it into this talk for the purpose of a joke.”> As prisoners we
are behind bars. We are part of the bar spectral sequence.

Example 3.2. Let X € Alg]E1 (S) Ihell, for a field k the (topological) bar spectml sequerice has the
signatule
EZ,q ~ To I.H,-q(x}k)(k, k) = 1 ip+q(BX,' k)

which comes from filtering the bar construction.

End of joke.

2This doesn’t seem clear in Lurie’s formulations.

3For the sake of the prison, this is a cell complex. Credits to Julius for the joke.
“In general, it only converges conditionally.

5Sorry.
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3.2 Spectral Sequences in Algebra
Many spectral sequences in algebra come from double complexes.

Example 3.3. Let C** be a double complex, i.e. there are horizontal and vertical differentials
dy,d, such that the horizontal and vertical sequences are chain complexes and all squares
anticommute. We form the total complex

TotC** = ( [T ¢, d=4, +dv)
p+q=n n

which we can filter in two ways: filter the double complex horizontally and vertically. This
leads to two spectral sequences

EYT = HY(H](C**)) = H'"9(TotC**) and Ej7 = HJ (H{(C**)) = H/"(Tot C**),
the double complex spectral sequences.

Remark 3.4. We warn that the convergence does not mean that they necessarily lead to the
same filtration on the abutment, rather that we get two (possibly different) E.-pages which
give rise to filtrations on H?*9(Tot C**).

Comparing these two spectral sequences give many cool results. For example, one can give
brief proofs of the Five Lemma or the Snake Lemma by virtue of these [Vak24,1.7.B, 1.7.6].

Theorem 3.5 (Grothendieck Spectral Sequence). Let G : & — Z and F :  — ¢ be left-exact
functors of abelian categories and suppose that G maps injective objects to F-acyclic objects. Let
A € o/, then there is a spectral sequence

E7 = (RTF)(RPG(A)) = RPT(F 0 G)(A),
the so-called Grothendieck spectral sequence

Idea Sketch. Let A — I°® be an injective resolution. One needs to choose a well-behaved injective
resolution (J**) of F(I°®) via the Horseshoe Lemma. So we obtain a double complex (G(J**))
and need to compare the double complex spectral sequences associated to this.

A comment from Marius was that this can also be immediately obtained from a filtration which
is left as an exercise. O

Corollary 3.6.

(i) Let f : X — Y be a map of spaces and F € Sh(X). The Grothendieck spectral sequence
yields the Leray spectral sequence

EY" = HP(Y,R1f,F) = HP (X, F).

In the case f : E — B is a Serre fibration of spaces with simply-connected B and connected
fiber F and F is the constant sheaf at A € Ab, then one can check that the Leray spectral
sequence takes the form of the Serre spectral sequence.

(ii) Let f : A — B be a map of commutative rings, M € Mody and N € Modp. The
Grothendieck spectral sequence yields the Ext base change spectral sequence

E}T = Exth(M, Ext’,(B, N)) = Ext), (M, N).

There is also a Tor base change spectral sequence.
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(iii) Let 7,G € Cohx. Then, the Grothendieck spectral sequence yields the local-to-global
spectral sequence
E)T = HP(X, Ext1(F, G)) = Ext'T1(F, G).

We refer the reader to Belmans’ notes [Bel14] for the Cech-to-derived functor spectral sequence but
it also contains other algebraic examples not coming from the Grothendieck spectral sequence.
A more geometric example coming from double complex spectral sequences would be the
Frolicher spectral sequence interpolating between the Dolbeault cohomology and complex de
Rham cohomology. This could be more in flavour of Joana’s work.

3.3 The Adams Spectral Sequence
We construct the Adams spectral sequence through the Bousfield-Kan spectral sequence.

Example 3.7. Let X* : A — ¢ be a cosimplicial object. Then, it yields® a filtered object

- — Tot<a(X®*) —— Tot<1(X®*) —— X° X0

where Tot<,(X*) = lima_, X*|a_,. Its associated spectral sequence is the Bousfield-Kan spectral
sequence of X* [BK72, Chapter X.6, X.7].

Example 3.8. Let A € Algy (Sp) and consider the cobar” complex CB*(A) : A — Sp given by

, —
AL AQA — ...
E— Ra—

Let X € Sp. The following spectral sequences will be phrased in the Adams grading convention
as opposed to the Serre grading from above. This is merely a convention and results from a
certain shearing map. Since we are not performing any calculation, we will refrain from saying
more.

(i) The Bousfield-Kan spectral sequence to CB*(A) ® X is the A-Adams spectral sequence which
for nice enough A has E;-page

where X A is the so-called A-nilpotent completion.
(ii) Setting A = MU (and X connective) yields
E)T = Extiyl; \uMUo, MU, X) = 7, X,
the so-called Adams-Novikov spectral sequence. People also like to set A = BP.
(iii) Setting A = HIF, yields
E}T = Extz{g(le,H.(X; Fp)) = 75— p(X)},
the classical (mod p) Adams spectral sequence.

Completely understanding the Adams spectral sequence is essentially impossible, as it amounts
to understanding the stable homotopy of spheres. In the words of Mahowald:

®Cosimplicial objects actually correspond to towers by the co-categorical Dold-Kan correspondence [Lur17,
Theorem 1.2.4.1].

7 As noticed by Bhavna and Laurent, this was another opportunity for a pun — to be outside of the bars. I
completely missed this one.
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The Mahowald Uncertainty Principle. Any spectral sequence converging to the
homotopy groups of spheres with an E;-term that can be named using homological
algebra will be infinitely far from the actual answer.

In that regard results about the Adams spectral sequence usually have extremely interesting
consequences.

n3 *
s 2
h% h3 h2h4

hy hy hy hy hy

O =N W R T YNy W
—

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 1: Let X = S. This is from [Hat04, p. 599].

For example, consider the classical Adams spectral sequence for X = S. It’s an algebraic exercise
to compute the horizontal 1-line which consists of the elements /; at position (1,2").

¢ [t turns out that the non-trivial elements on the E..-page detected by h; are precisely the
Hopf invariant one elements of the famous Hopf invariant one problem. In fact, Adams
invented his spectral sequence to study this problem [AA66]! If one unravels further,
then it turns out that this is equivalent to the (non-)vanishing of a certain d,-differential
[Wan67]. I recently gave a talk on this topic where you can find a bit more information on
this [Zhu25].

* Studying h? corresponds to the famous resolution of the Kervaire invariant one problem
from geometry topology via equivariant homotopy theory by Hill-Hopkins-Ravenel
[HHRO09] and recently Lin-Wang-Xu [LWX25].

e The elements h? are related to characteristic numbers of framed manifolds with corners as
studied by Burklund-Xu [BX25].

¢ Higher powers seem very much like open problems.

This shows a glimpse of how geometric problems can be translated into the algebra of differen-
tials on a spectral sequence.

This talk of course only scratches the beginnings of spectral sequences but you are now released
from prison. Enjoy your freedom!®

81s freedom another word for synthetic spectra?...
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