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Abstract

These are my notes from Georg Tamme’s lecture Localizing Invariants and Algebraic K-theory
from the 2023 IHES Summer School — Recent Advances in Algebraic K-theory. The lectures
can be found on Youtube.

Please contact me at qzhu@mpim-bonn.mpg.de (or over social media) for comments or sug-
gestions.
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Qi Zhu Localizing Invariants and Algebraic K-Theory

0 Intro

Let A be a ring. According to Quillen we define connective K-theory as the connective spectrum
associated to the E∞-group

K(A) = K
Ä

Projfg(A)
ä
=
Ä

Projfg(A)core,⊕
ägp

where Projfg(A) is an exact category1 in the sense of Quillen.

Now you can try to compute it for which one wants some descent statements, i.e. maybe one
wants some excision type statements for Zariski covers. But with the above definition this is not
so easy to prove. Quillen’s theorems mainly work for abelian categories, so it’s hard to prove
descent statements because Projfg(A) is not an abelian category.

Thomason proposed that you should replace Projfg(A) by the category of perfect complexes
Perf(A), i.e. finite complexes of finitely generated projectives. This is a small stable ∞-category
and Perf(A) ≃ D(A)ω. The main point is: Waldhausen further developed K-theory in terms
of Waldhausen categories and he has a fibration theorem, called Waldhausen Fibration Theorem,
which sometimes gives you fiber sequences of K-theory spectra.

1 Localizing Invariants

You can define K(A) for Perf(A). More generally, you can define K(C ) ∈ Sp for any small stable
∞-category C . In this setting you can formulate the analog of Waldhausen’s fibration theorem
and the functors satisfying this are called localizing invariants.

1.1 Verdier Quotients

Definition 1.1. Let C ∈ Catst
∞ and D ⊆ C be a stable subcategory. The Verdier quotient is

C /D = C [W−1] with W = { f : c → c′ : cofib f ∈ D}.

Remark 1.2. So C → C /D induces a functor Fun(C /D , E ) → Fun(C , E ) is an equivalence onto
FunW(C , E ), the full subcategory spanned by those functors sending f ∈ W to equivalences.

Fact 1.3.

(i) The Verdier quotient C /D is stable.

(ii) Let E ∈ Catst
∞. Then, Funex(C /D , E ) ≃ FunD 7→0(C , E ).

(iii) Let X, Y ∈ C with X, Y ∈ C /D . Then,

MapC /D (X, Y) ≃ colim
Z∈D/Y

MapC (X, cofib(Z → Y)) .

Proof. See e.g. [NS18]. The classical statements in the language of triangulated categories is
already in work of Neeman.

Since D is stable, D/Y is filtered.

Remark 1.4. Here is some intuition about 1.3(iii): Pictorially, Pictorially,

1I.e. there is some exact sequence notion satisfying some axioms.
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Z

X Y

cofib(Z → Y)

and since Z ∈ D , the map Y → cofib(Z → Y) lies in W, i.e. it gets inverted in C /D where
X → cofib(Z → Y) amounts to X → cofib(Z → Y) ≃−→ Y.

1.2 Ind-Completion

We were looking at small categories but we can pass to large categories via ind-completions.

Definition 1.5. Let C ∈ Catst
∞. Then, Ind(C ) ⊆ PSh(C ) is the full subcategory spanned by

filtered colimits of representables.

This is now presentable, so you can use the adjoint functor theorem which is not available for
small categories.

Remark 1.6. The Yoneda embeddingよ : C → PSh(C ) factors over Ind(C ).

Question 1.7. Can you recover C from Ind(C )?

Answer. Not quite! You can check with mapping space formulas that C ⊆ Ind(C )ω. In fact,
Ind(C )ω is the idempotent/Karoubi completion of C . In other words, it is closed under retracts
and every object therein is a retract of an object in C .

Indeed, let X ∈ Ind(C )ω, so you can write it as a filtered colimit X ≃−→ colimi Ci but by
compactness, this factors over some Ci, i.e.

X colimi Ci

Ci

≃

showing the retract statement.

Remark 1.8. One checks Ind(C ) ∈ PrL,ω
st , i.e. that it is a presentable stable compactly generated2

∞-category.

We saw that the passage C 7→ Ind(C ) is almost an equivalence of categories, not quite, applying
(−)ω only returns the idempotent complete ones. These idempotent complete ∞-categories are
the main players for localizing invariants.

Definition 1.9.

(i) We write Catperf
∞ for the ∞-category of Karoubi complete small stable ∞-categories.

(ii) A sequence

D C Ei p

in Catperf
∞ is called a Karoubi sequence if

2In particular, (−)ω does not mean compact objects in PrL
st. We restrict to compactly generated categories and

restrict to compact object-preserving functors. Equivalents, the right adjoint preserves filtered colimits.
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• p ◦ i ≃ 0,3

• i is fully faithful,
• the induced map4 C /D → E is an idempotent completion.5

(iii) A (Karoubi) localizing invariant is a functor Catperf
∞ → Sp sending Karoubi sequences to

fiber sequences.

Remark 1.10. Equivalently, a Karoubi sequence is a bifiber sequence in Catperf
∞ .

Remark 1.11. There is an equivalence Ind : Catperf
∞

≃−→ PrL,ω
st with inverse (−)ω. So K-theory

has as input objects in Catperf
∞ but by this equivalence we can equivalently take objects in PrL,ω

st .
The point of Efimov K-theory is to extend the class PrL,ω

st to the so-called dualizable categories.

Theorem 1.12 (Waldhausen, Thomason, Schlichting, Blumberg-Gepner-Tabuada, Hebestre-
it-Lachmann-Steimle). Non-connective K-theory K(−) is Karoubi-localizing.

BGT uses Waldhausen and Schlichting’s work while Hebestreit-Lachmann-Steimle is a more
modern purely ∞-categorical approach.

Remark 1.13. A possible definition is the K(−) is the universal localizing invariant. For rings
you can define negative K-groups by forcing the fundamental theorem.

Let’s just blackbox this and prove things about K-theories of schemes. There are some more
localizing invariants, but not so many. Tamme only knows one, namely THH. Plus everything
you can build out of these like TC, TP, · · · . Plus you can restrict the domain Catperf

∞ .

1.3 Thomason-Neeman Localization Theorem

We know that Karoubi sequences gives us fiber sequences on K-theory, so that’s of course
nice. But we first need to produce some of these sequences. That’s what Thomason-Neeman
localization is about.

We start with some candidate sequence D → C → E and wish to check whether it is a Karoubi
sequence. This might not be so easy on Cat∞ but passing to the ind-completions we have
presentable ∞-categories, so we have the adjoint functor theorems and so on. Such tools often
make a check possible.

Theorem 1.14. Let C ∈ Catperf
∞ and D ⊆ C be a stable subcategory with p : C → C /D .

(i) Then,
L = Ind(p) : Ind(C ) → Ind(C /D)

is a Bousfield localization.

(ii) There is an equivalence ker L ≃ Ind(D).

Proof.

(i) The functor L preserves filtered colimits by definition. Plus everything is stable and L is
also exact6, so L commutes with all colimits. By the adjoint functor theorem, it has a right
adjoint R. On C /D this R is given by

C /D → Ind(C ), Y 7→ MapC /D (p(−), Y).

3You can check that this is a condition: the space of nullhomotopies of p ◦ i is contractible or empty!
4It exists because of p ◦ i ≃ 0.
5The Verdier quotient of idempotent complete ∞-categories in general need not be idempotent complete.
6This comes from functoriality of Ind, as maps in PrL,ω

st are in particular exact. The difficulty would of course lie
in proving that such a functoriality can be provided.
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A priori, this formula on the right is an object in PSh(C ) but by 1.3(iii) it lies in Ind(C ).

About fully faithfulness. Via 1.3(iii) you can check that LR ≃ id on C /D and now we
want to extend it to all of Ind(C /D). We do this by observing that R commutes with
filtered colimits which follows from the fact that L preserves compact objects.7 Thus, L
and R both commute with filtered colimits, so LR ≃ idInd(C /D), i.e. R is fully faithful.

(ii) Let X ∈ ker L ⊆ Ind(C ), so we can write it as a filtered colimit X ≃ colimi Ci. Consider
the fiber sequence

Di Ci RL(Ci)
ηCi

From the explicit formula you can check Di ∈ Ind(D). Passing to colimits yields

colimi Di X RL(X)

but RL(X) ≃ 0, so X ≃ colimi Di ∈ Ind(D) using Di ∈ Ind(D). The other inclusion is
clear.

The point is to show that everything is completely formal!

Corollary 1.15. There is an equivalence Ind(C /D) ≃ Ind(C )/ Ind(D).

Proof. This is a general fact about these sequences. Anyway, since L is a Bousfield localization, it inverts
a class of morphisms W. A map φ : x → y in Ind(C ) is such that Lφ is an equivalence if and only if

cofib(Lφ) ≃ L(cofib φ) ≃ 0.

In other words, cofib φ ∈ ker L. So

Ind(C /D) ≃ Ind(C )[{φ : φ ∈ ker L = Ind(D)}−1] ≃ Ind(C )/ Ind(D).

Yeah!

You usually apply this theorem in the other direction. You’re given a sequence of large (pre-
sentable) ∞-categories where it’s often easy to check that in fact you have some Bousfield
localization sequence and then you want apply (−)ω to get a Karoubi sequence of small stable
∞-categories.

Corollary 1.16 (Thomason-Neeman Localization). A sequence D → C → E is a Karoubi
sequence if and only if

Ind(D) Ind(C ) Ind(E )

is a Bousfield localization sequence.8

Proof. For ⇐= consider the comparison map

D C C /D

D C E

7This uses that Ind(C ) is compactly generated so that we may perform the Yoneda argument on compact objects
where we can pull out filtered colimits.

8It’s the same thing as saying that this is a Karoubi sequence in PrL
st.
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induced by the universal property of the Verdier quotient. By the same argument as in 1.15 and
using it, we have

Ind(E ) ≃ Ind(C )/ Ind(D) ≃ Ind(C /D).
Pass back by applying (−)ω.
I believe some steps are missing to make this into a full proof of the result with our technology.

This is the usual way the theorem is applied: In practice it is often feasible to prove that
Ind(D) → Ind(C ) → Ind(E ) is a Bousfield localization sequence because it is often possible to
explicitly write down the right adjoint of Ind(C ) → Ind(E ).

Remark 1.17 (Warning). You could start with (large) presentable ∞-categories: Let“D “C Ê

be a Bousfield localization sequence in Prst
L . Let’s even assume “C , Ê ∈ Prst,ω

L and that “C → Ê
preserves compact objects. This does not imply that“Dω “C ω Ê ω

is a Karoubi sequence.

The point is that you have to be a bit careful applying the Thomason-Neeman localization
theorem (1.16). Even if you have a Bousfield localization sequence, it doesn’t have to be in
this Ind-shape. One still needs that “D is compactly generated (1.11). This is precisely what
sometimes goes wrong.9

Example 1.18. There is a famous counterexample by Keller which uses precisely this situation.
He constructs a ring R and an ideal I ⊴ R and considers D(R) → D(R/I) and shows that this is
a Bousfield localization but its kernel has no non-trivial compact objects.

Remark 1.19. But: “D is still dualizable, so you can apply Efimov K-theory!

Example 1.20. Let A ∈ CRing and f ∈ A. Consider

D(A) D(A[ f−1])
−⊗A A[ f−1]

which is a Bousfield localization with kernel D(A on ( f )) ⊆ D(A). This is compactly generated!
Indeed, consider the Koszul complex

K( f ) =
ï

A
f−→ A
ò
≃ cofib( f : A → A)

which is compact since A is compact which also lives in D(A on f ), as inverting f has the effect
cofib f ≃ 0.

It generates: Let M ∈ D(A on ( f )). Suppose

mapD(A on ( f ))(K( f ), M) ≃ 0,

i.e. fib( f : M → M) ≃ 0, i.e. f : M → M is an equivalence. So 0 ≃ M ⊗A A[ f−1] ≃ M since
M ∈ D(A on ( f )).

This is the base case of the following theorem which nowadays has been generalized to qcqs
spectral algebraic spaces.

Theorem 1.21 (Neeman, Bondal-van den Bergh, Thomason). Let X be a qcqs scheme and U ⊆ X
be a qc open subspace with complement Z. Then,

Dqc(X on Z) = ker(Dqc(X) → Dqc(U))

is compactly generated.10

9If “D and “C are compactly generated, then so is Ê .
10Here, Dqc is the ∞-category of quasicoherent sheaves.
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Comment. There is an inductive argument coming from Thomason to do this. That’s why
Thomason’s name is included.

Corollary 1.22. There is a Karoubi sequence

Perf(X on Z) Perf(X) Perf(U).

Proof. Apply Ind to 1.21 via the Thomason-Neeman Localization (1.16).

This is really the important thing that will give Nisnevich/Zariski descent. The easiest case is
an open cover X = U ∪ V. Build a square coming from Perf(X), Perf(U), Perf(V), Perf(U ∩ V)
and one can check that the kernels of those localization sequences are equivalent! Thus, we
get a pullback square, so you get a Mayer-Vietoris sequence on K-theory. The same argument
works for Nisnevich descent.

This also allows you to reduce to local rings.

So all these descent statements are (up to 1.21) formal to obtain!

2 Excision

If you want to study singularities, then it’s usually not enough to consider Zariski or Nisnevich
coverings. You need something more general, which are the cdh-covering – or in the simplest
case: closed coverings.

2.1 Milnor Squares

Example 2.1. Let char k ̸= 2 and A = k[x, y]/(y2 − x3 − x2) be the algebra representing the
nodal curve. Consider its normalization A1 → Spec A whose singularity has two preimages.
Gluing them yields the nodal curve:

∗ ⨿ ∗ A1

∗ Spec A
⌜

On rings this corresponds to a cartesian square

A k[t]

k k × k

⌟
ev(−1,1)

∆

in CRing where the right map is surjective since char k ̸= 2. Clearly, those rings besides A are
much simpler than A. So you can ask if you can say something about K(PerfA) if you know
something about the other corners. This is a typical situation of a Milnor square.

Definition 2.2. A Milnor square is a cartesian square

A B

A′ B′

⌟

in CRing with surjective vertical arrows.
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Theorem 2.3 (Bass, Milnor, Murthy). For every Milnor square there is a LES

K1(A) K1(A′) ⊕ K1(B) K1(B′) K0(A) · · ·∂

extending infinitely to the right.

This theorem is also called excision. Using this result, it is easy to compute the non-positive
K-groups of the nodal curve (2.1).

This statement was known before K2 and higher K-groups were even found. People tried to
extend this sequence to the left.

Proposition 2.4 (Swan). This sequence does not extend (functorially) to the left with

· · · K2(B′) K1(A).∂

So Milnor squares will not give rise to a pullback of K-theory spectra.

Theorem 2.5 (Land-T.). Let

A B

A′ B′

⌟

be a cartesian square in AlgE1
(Sp).11 Then, there is a naturally associated ring spectrum

C = A′ ⊙B′
A B and a commutative diagram

A B

A′ C

B′

⌟

such that any localizing invariant takes Perf(−) of this inner square to a cartesian square in Sp.
Moreover, the underlying spectrum of C is A′ ⊗A B.

Example 2.6. If the square we start with is a Milnor square, then π•(C) ∼= TorA
• (A′, B) and

π0(C) ∼= A′ ⊗A B ∼= B′ using the surjectivity of those maps in the Milnor square.12 Recall that
K-theory increases connectivity by 1. Relatedly, Kn(R) only depends on τ≤n−1R. So computing
K1(C) only depends on π0C. Applying K(−) gives BMM (2.3). This also shows why the sequence
cannot extend.

Remark 2.7. Because we also have Zariski descent, we can reduce to the affine setting, so these
results give something for schemes. For truncating localizing invariants (2.8) we will get cdh
descent but this will need some geometric input.

There was a lot of work on specific Milnor squares. This uses completely different techniques
than those from the first lecture. One of the motivating questions before the Land-Tamme
theorem was why you cannot use the machinery of localizing invariants to treat these kinds of
problems. But in fact, you can.

11Every Milnor square is an example.
12You should think of C → B′ as modding out a nilpotent ideal.
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2.2 Applications

In the example 2.6 we recover B′ from π0C. There are localizing invariants which don’t see this
difference, so then we get excision for free. Such localizing invariants deserve a name.

Definition 2.8. A localizing invariant E is called truncating if E(C) → E(π0C) is an equivalence
for every C ∈ Sp≥0.13

Example 2.9. The following are truncating.

(i) Kinv = fib(trcyctr : K → TC) by the famous theorem of Dundas-Goodwillie-McCarthy.14

So K does not satisfy excision (i.e. it does not send Milnor square to pullback squares) but
the failure of doing so is the same for K and for TC. Because sometimes you can effectively
compute TC, this lets you compute something about the K-theory of Milnor squares.

(ii) HP over Q15 by Goodwillie.

(iii) KH over Z-algebras, Weibel’s homotopy K-theory. So K is not A1-invariant but you can
force it to be and that’s the result. If you do this you also kill all the higher homotopy
information, i.e. it is truncating.

(iv) K(−)[1/p] is truncating on Z/pn-algebras by Weibel.

Corollary 2.10. Let E be a truncating localizing invariant.

(i) Then, E satisfies Milnor excision, i.e. E sends Milnor squares to cartesian squares.

(ii) If I ⊴ A is nilpotent, then E(A) → E(A/I) is an equivalence.

(iii) Then, E satisfies cdh-descent, i.e. if

Y′ X′

Y X

is an abstract blow-up, i.e. the horizontal maps are closed immersions, X′ → X is proper
and an isomorphism outside Y and potentially some finiteness conditions, then E sends
this square to a cartesian square.

Proof.

(i) This is because B′ ≃ π0C.

(ii) The main idea is that we can assume I2 = 0 since I is nilpotent and are in the situation of
a square-zero extension which can be written as a pullback. In such a situation we can
compute everything showing up in the Land-Tamme square.

(iii) This needs some geometric input and essentially relies on the fact that abstract blow-up
squares can be built from blow-ups.

13Here, E(C) = E(PerfC).
14McCarthy proved it for simplicial rings and Dundas found a way to make this work for connective ring spectra.

They prove it after p-completion and Goodwillie added the rational case (which was proven earlier).
15Restrict all algebras to Q-algebras and categories to Q-linear ones.
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2.3 Schwede-Shipley Theorem

Proof Idea of 2.5. We want to have a cartesian square

E(A) E(B)

E(A′) E(C)

which equivalently means that

E(A) E(A′) ⊕ E(B) E(C)

is a fiber sequence. The idea is to construct some category C such that E(C ) ≃ E(A′) ⊕ E(B)
and hope that PerfA ↪→ C . Then, we can take the Verdier quotient and will at least get a fiber
sequence.

The Schwede-Shipley theorem is some sort of Morita theory for ring spectra and is a recognition
theorem about when some stable presentable category is the category of modules over some
ring spectrum.

Theorem 2.11 (Schwede-Shipley, 2003). Let C ∈ PrL
st and c ∈ C ω generating C . Then, there is

an equivalence C ≃ RModEndC (c).

Proof. Let us write R = EndC (c) ∈ AlgE1
(Sp). There is a functor

G : C → RModR, d 7→ mapC (c, d).

We observe:

(1) Then, G preserves all limits by construction.

(2) Moreover, G preserves filtered colimits since c is compact. Since we are in a stable setting,
G thus preserves all colimits.

(3) The generating condition implies that G is conservative.

By (1), the adjoint functor theorem thus provides a left adjoint F. The module category RModR
has a compact generator R and we claim F(R) ≃ c. Let us compute this:

mapC (F(R), d) ≃ mapR(R, G(d)) ≃ mapC (c, d),

so F(R) ≃ c by Yoneda.

So G(F(R)) ≃ G(c) ≃ R. So, η : idRModR ⇒ G ◦ F is an equivalence on the compact generator R
but G, F preserve colimits by (2), so η is an equivalence.

Now about the counit ε : F ◦ G ⇒ idC . By the triangle identities we obtain that Gε is an
equivalence, so conservativity of G by (3) implies that ε is an equivalence.

2.4 Proof of Theorem

The idea that we already mentioned in the previous subsection comes from the proof of this
BMM theorem (2.3). They work with finitely projective A-modules and shows that Projfg

A
is the pullback of the other categories involved in a Milnor square. But in general, K is not
well-behaved with pullbacks of categories. A pullback

9
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Projfg
A Projfg

B

Projfg
A′ Projfg

B′

⌟

is a pair of modules together with an equivalence after base changing to B′. We will relax this
equivalence condition.

Definition 2.12. Consider a diagram

B

A ′ B′

q

p

in Catperf
∞ (or just Cat∞). The lax/oriented pullback is an ∞-category A ′ →×B′ B with objects

(X ∈ A ′, Y ∈ B, pX → qY in B′).

There is a full subcategory in A ′ →×B′ B where you require the map in B′ to be an equivalence.
In other words, this is the usual pullback A ′ ×B′ B.

Observation 2.13. There exists a split Karoubi sequence

B A ′ →×B′ B A ′(0,−,0) pr1

So E(A ′ →×B′ B) ≃ E(A ′) ⊕ E(B) since we get fiber sequences from the localizing invariant
condition and these split.

Observation 2.14. There is a preferred functor

i : PerfA → PerfA′
→
×PerfB′

PerfB

which already exists for every commutative square of rings.16 This is fully faithful if that
original square is a pullback square. Define C as the Karoubi quotient of i, i.e. take the Verdier
quotient and then idempotent complete.

We stated Schwede-Shipley for presentable ∞-categories but now we have small ∞-categories
but that’s okay, we can just ind-complete. It turns out that Ind(−) commutes with lax pullbacks
(while it does not for strict pullbacks), so this is possible. Then, we can pass back to compact
objects.

Proof of 2.5. Note that the oriented pullback is generated by (A′, 0, 0) and (0, B, 0). On the other
hand, we have the fiber sequence

(0, B, 0) (A′, B′, B′ ≃−→ B′) (A′, 0, 0).

In C we modded out PerfA, i.e. the middle term, so (A′, 0, 0) and (0, B, 0) only differ up to a shift.
This implies that C is generated by the image B of (0, B, 0). By Schwede-Shipley we deduce
C ≃ PerfEndC (B) and so it remains to compute the underlying spectrum of C = EndC (B). All
the other desired properties are already provided (as can be checked)! After ind-completion we
have the adjoint functor theorem and get a sequence of adjunctions

16It really already maps to the strict pullback.
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RModA (· · · )
→
×(··· ) (· · · ) Ind(C )

i

s

p

r

It’s formal that r ◦ p ≃ cofib(ε : i ◦ s ⇒ id→
×

) but all these functors are explicit! For instance,
s(X, Y, g) is the pullback

s(X, Y, g) Y

X Y ⊗B B′

⌟

g

and now it’s a doable computation by computing this on the generator.

3 Pro-cdh Descent

This is on work from Morrow – no:17 Krishna-Weibel, Srinivas.

3.1 Results

Consider an abstract blow-up square

Z′ X′

Z X

⌟
p

of schemes, i.e. it is cartesian, the horizontal arrows are closed immersions, p is proper and an
isomorphism outside of Z plus potential finiteness conditions if we are not in the Noetherian
setting.

Example 3.1. A typical example is the normalization of the nodal curve (2.1):

∗ ⨿ ∗ A1

∗ Spec A

⌟

In general, K of abstract blow-up squares will not be cartesian.

Observation 3.2. Now cdh-descent basically means that you send abstract blow-up squares to
cartesian squares. The idea of pro cdh descent is that you place the closed subscheme Z by an
infinitesimal tubular neighbourhood. As such, let Z(n) be the n-th infinitesimal thickening of Z
in X. So we get a sequence

Z = Z(0) Z(1) · · · X

leading to an ind-scheme {Z(n)}n. This looks a bit more like something open, so maybe there is
a better chance to get some descent property.

Theorem 3.3 (Krishna-Srinivas, Krishna, Morrow, Kerz-Strunk-T., Bachmann-Khan-Ravi-Sos-
nilo). Assume that X is a Noetherian18 ANS stack. Then, the square

17Correction by Morrow, I think.
18It’s special to the Noetherian setting but the scheme structure for Z didn’t really play a role since we pass to

infinitesimal thickenings anyway.
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K(X) {K(Z(n))}n

K(X′) {K(Z′(n))}n

in Pro(Sp) is (weakly) cartesian, i.e. τ≤k(K(X) → pullback) is an equivalence19 in Pro(Sp) for
every k.

Here, Krishna-Srinivas and Krishna consider special cases. Morrow does it more generally
assuming resolution of singularity using trace methods. Finally, KST proved it in the Noetherian
setting. Then, BKRS generalized it to a stacky setup and removed the word ’weakly’.

Example 3.4 (Dahlhausen-T.). What about the non-Noetherian setting? Let

A = F
ï

x, y,
x
y

,
x
y2 , · · ·

ò
/(xy), I = (y), J = (x).

Then,
J2 = 0 ⊆ J ⊆ · · · ⊆ I3 ⊆ I2 ⊆ I.

With these we can construct an abstract blow-up square

Spec(A/I) Spec(A/J)

Spec(A/I) Spec(A)

⌟

If we had pro-cdh descent, then

K(A) {K(A/In)}n

K(A/J) {K(A/(In + J = In)}n

and now the right side is an equivalence which implies that the left side is a weak equivalence,
so in particular isomorphisms on pro-homotopy groups – which are just groups in this case. We
deduce K1(A) ∼−→ K1(A/J). Since A is commutative, the units sit inside:

K1(A) K1(A/J)

A× (A/J)×

∼

and now 1 + x 7→ 1 but x ̸= 0, so this contradicts injectivity since also 1 7→ 1.

The following is formulated for derived schemes because derived schemes show up anyway.

Theorem 3.5 (Kelly-Saito-T., in progress). Let p : X′ → X be proper and locally almost finitely
presented morphism of derived schemes which is an isomorphism outside a closed Z ⊆ |X|
with |X| \ |Z| qc and X qcqs. Then, the square

K(X) K(X∧
Z)

K(X′) K(X′∧
Z)

19So we get equivalences of pro-homotopy groups.
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is weakly cartesian.20

More localizing invariants hold are THH, TC, · · · .

Example 3.6. Let X = Spec A and Z be cut out by f1, · · · , fm ∈ π0(A). Then, X∧
Z is the pro-

derived scheme {X � ( f n
1 , · · · , f n

m)}n.

This result (3.5) implies a vanishing conjecture from Weibel.

Remark 3.7. Let A be a discrete Noetherian ring. Then, {A � f n}n
≃−→ {A/ f n}n.

The proofs of all these cdh statements (including 2.10(iii)) depends on some geometric reductions
and two features about K-theory:

• Pro-excision,

• Derived blow-ups.

3.2 Pro-excision

Observation 3.8. Let

A B

A′ B′

⌟

be a pullback of ring spectra which is Tor-independent, i.e. A′ ⊗A B ≃−→ B′. Then, K of this
square is a pullback by 2.5 since A′ ⊙B′

A B ≃ B′ in Sp by this Tor-independence assumption.

Proofs of the KST Theorems for finite p. Reduce to affine X. Let X = Spec A and X′ = Spec B and
φ : A → B be a finite21 map, then it is of almost finite presentation. For simplicity of notation
let us say that Z ⊆ |X| is defined by f ∈ π0(A). The condition that φ is a map outside Z
is to say that it is an equivalence after inverting f . Let J = fib φ which is an almost perfect
(pseudocoherent) A-module. So J[ f−1] ≃ 0.

Claim 3.9. The square

A {A � f n}n

B {B � f n}

φ

is weakly cartesian.

Proof. Equivalently, we need to check that the map of fibers

J {J � f n}n

A {A � f n}n

B {B � f n}

φ

20Here, we see X∧
Z as an ind-derived scheme.

21I.e. it is on π0.
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is a weak equivalence. The fiber of that map is the pro system {J,− · f } which we want to show
to be 0. We have

0 ≃ J[ f−1] ≃ colim
Å

J
f−→ J

f−→ · · ·
ã

.

If J were compact, then this would already imply that a fixed power of f acts as 0. This is not
quite the case but let us apply

0 ≃ τ≤k J[ f−1] ≃ colim
Å

τ≤k J
f−→ τ≤k J

f−→ · · ·
ã

but τ≤k J is compact by the finiteness assumptions, so this argument holds now, i.e. f N is
nullhomotopy for some N ∈ N on τ≤k J. This precisely says that the pro-system {J,− · f } is
weakly contractible.

Moreover, B ⊗A A � f n ≃ B � f n. Tinkering a bit with pro-systems then lets us conclude the
KST results with 3.8 for finite p.

3.3 Derived Blow-Ups

We want a derived version of the following. The following works for all localizing invariants
but Thomason phrased it for K.

Theorem 3.10 (Thomason). Let R be a ring and t1, · · · , tm be a regular sequence and let

E ‹X = BlX Z

Z = V(t1, · · · , tm) X = Spec R

q

j

⌟
p

be a (not necessarily derived) cartesian square of schemes. Then,

K(X) K(Z)

K(‹X) K(E)

is cartesian.

Proof. The main idea is that one basically fully understands Perf‹X. Consider

0 ⊆ P0 ⊆ · · · ⊆ Pℓ = ⟨O‹X, j∗OE(−k) : k = 1, · · · , ℓ⟩ ⊆ · · · ⊆ Pm−1 = Perf‹X.

Then, one computes p∗ : PerfX
≃−→ P0 and j∗q∗(−ℓ) : PerfZ

≃−→ Pℓ/Pℓ−1 and similarly for E.
Comparing the filtration on ‹X and E one obtains the theorem.

Now, the derived version.

Definition 3.11. Let X be a derived scheme and f : X → An. The derived blow-up of X in f is‹X = X ×R
Am BlAm (0).

Theorem 3.12 (Weak version: KST, Antieau). Let Z = V( f ) = V( f1, · · · , fm) = X ×Am 022 with
thickenings Z(n) = V( f n

1 , · · · , f n
m) and

22These are the derived versions, i.e. with �.
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D(n) ‹X
Z(n) X

⌟

in derived schemes. Then,

K(X) {K(Z(n))}n

K(‹X) {K(D(n))}n

⌟

is cartesian.
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